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1. EXECUTIVE SUMMARY

Computer communication and computer architecture technology

has advanced to the state where it is feasible to build computer

systems from many smaller systems. Such distributed

architectures are attractive for many reasons including:

o Ecnomicg . The effort spent on operational software
must not be lost. Often an important function of a new
distributed system is to integrate information gathered
or processed by several existing systems.

o Reliab Li. Distributed systems built from autonomous
components can be made more reliable than single
component systems.

o Scalabil.it. Building a system out of repeatable parts
makes it possible to adjust the size of a system without
reprogramming all of the parts.

o Inherent Separation. Some applications must deal with
parts that are not physically close together. There is
often no alternative to building these systems from
separate parts.

Achieving the potential benefits of a distributed

architecture involves more than interconnecting separate computer

systems. The allocation and sharing of resources among the

multiple components of a distributed system must be managed.

This is the purpose of a Distributed Operating System (DOS).

The Distributed Operating System Design Study was aimed at

investigating issues encountered in the development of such

operating systems. The goal of the project was to investigate
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three important distributed system design areas:

I. Failure detection and recovery.

The redundancy, parallelism, independent failure
patterns, and broadcast capabilities exhibited by
distributed architectures provide a potential for
highly reliable systems. However, current distributed
systems often display worse or only marginally better
system reliability than their single host counterparts.
The natural approach of patterning distributed systems
after more familiar single host systems often leads to
the "in series" connection of system components which
results in vulnerability to single component failures.
Furthermore, the reliability mechanisms described in
the literature for distributed environments typically
either are designed to solve a very specific problem as
opposed to a general systemic one, or are difficult to
integrate with other system mechanisms. One objective
of the DOS Design Study was to investigate solutions to
reliability problems which exploit the potential for
reliability inherent in distributed architectures and
which also can be integrated with other system
mechanisms.

2. Global system control and scheduling.

Current distributed systems frequently exhibit
noticeably worse performance characteristics than their
single host counterparts. This is due, in part, to a
lack of global resource management and system control
in these systems. For example, when components on two
hosts must exchange information, the components should
be scheduled to receive processor resources at (or
about) the same time. The processor resource is just
one of many resources that could be allocated according
to global needs. A second objective of the project was
to investigate the problem of coordinated resource
management in distributed systems.

3. Features desirable for DOS constituent hosts.

Distributed systems are ultimately implemented from the
features and capabilities provided by the underlying
constituent hosts. A problem with many single host
operating systems is that they do not allow their
resources to be used in ways other than those built

S-2
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into the operating system. A third objective of the
DOS Design Study was to characterize the capabilities
host operating systems should provide to facilitate
their integration into a DOS.

Early in the study we discovered that we needed examples of

the demands applications place on various reliability and

resource management mechanisms in order to make realistic

decisions about their effectiveness or applicability. We

developed descriptions of three hypothetical applications,

suitatle for implementation on a distributed hardware base, which

served as a framework for much of the study. The applications

were chosen to reflect a broad range of design constraints with

respect to system performance, cost, reliability, and modularity.

The example applications were:

1. Field Command Unit. This hypothetical application was
chosen to be representative of a tactical command and
control environment. It is a system intended to
support the mission of a unit staffed by command
officers and teams of specialists in intelligence,
logistics, planning, air support, etc. Modularity,
survivability and mobility are important system
requirements.

2. Air Traffic Control. This application focuses on
supporting air traffic controllers responsible for
controlling aircraft traffic over a large area. The
goels of the system are the protection of aircraft
occupants, timely arrival of flights, and fuel
conservation.

3. A Mlitary Meage System. This example considers an
electronic message system for a military command
center. The purpose of the system is to help the
command staff compose, send, read and file messages in
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a way that supports the command's normal routine. Both
intra- and inter- command center message traffic is to
be supported.

We believe that these example applications serve to motivate a

broad range of requirements for military and commercial systems.

However, the "designs" developed for these examples should be

regarded as purely hypothetical.

One of the first tasks undertaken was to survey reliability

mechanisms for distributed and centralized systems. Over twenty

techniques were studied and analyzed.

These mechanisms are generally designed to satisfy one of

two reliability goals (although some are designed to satisfy

both):

1. To ensure correct o in the presence of
component failures.

2. To ensure c.ntinuj.D ogf n and task completion
in the presence of component failures.

Many of the mechanisms studied were originally developed for

centralized systems and reformulated for use in a distributed

environment. This could be done because many reliability issues

are important in both environments. There are, however, three

important ways in which reliability considerations for

distributed environments differ from those for centralized

environments:
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1. The ability to recover from failures is a more critical
concern for a distributed environment. A simple
probabilistic argument can be used to show that in
order for a distributed architecture to provide the
same level of "system" reliability as a centralized one
its design must include mechanisms which permit it to
function as a system when some of its components are
non-functional.

2. A distributed environment can be engineered so that
component failures are independent. A consequence of
independent failure patterns is that it is possible, at
least in principle, to engineer systems that are highly
fault tolerant since the components which remain
operational can be used to provide continuity in system
service.

3. Failure recovery in a distributed environment requires
coordination between the components. As a result
failure recovery techniques used in distributed systems
require additional mechanism to accomplish the
coordination.

The types of failures or errors that can be expected in a

distributed environment can be divided into three categories:

o Host outages.
o Communication outages.
o Component malfunctions.

This study focused on recovery from host and communication

outages. Although recent work on the important problem of

recovering from component malfunctions appears promising, more

work is required to refine and extend the emerging results for

integration into system designs.

Analysis of the various reliability techniques resulted in

the identification of a relatively small number of key ideas that
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reappear in slightly different ways in different techniques. The

key ideas include:

o Redundancy of data and control.
o Atomicity.
o Isolation of partial results.
o Guaranteed permanance of effect.
o Restoration of an acceptable state.
o Bounding the time during which a failure causes

problems.
o Use of timeouts

In general terms, techniques concerned with "correct" operation

tend to focus on being "careful" about how operations are

performed, whereas techniques that address continuity of

operation focus on using alternate processing or data sources to

proceed, perhaps with limited functionality, toward task

completion.

As a result of this survey we concluded that existing

approaches to reliability appear to be adequate as building

blocks for reliable distributed systems. However, most of the

mechanisms surveyed were formulated apart from consideration of

how they might fit in with other reliability mechanisms or other

operating system features.

We next focused on this problem of integrating reliability

mechanisms into distributed operating systems by developing a

design for an integrated reliability system for a DOS. Our

objective was a design capable of providing reliability for a DOS
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as a whole. This would require the engineering and careful

integration of a number of different reliability techniques at

different system levels. By doing this we hoped to learn how

difficult it would be to integrate various reliabiity techniques

with one another and with mechanisms which implement other

important parts of the system.

Before we could proceed with the reliability system design

it was necessary to develop a DOS architecture. Although our

primary objective was to specify a DOS in sufficient detail to

provide a framework for development of the reliability system, we

were also interested in investigating how various DOS features

interact with one another and with the reliability system.

The environment assumed for the DOS is a collection of

computers interconnected by a high bandwidth, low delay local

area network. The component host computers are assumed to be of

different manufacture and to include:

o Shared e p hosts, such as time sharing
systems;

o Hosts d t secific function, such as data
storage or i/o device control, and possibly to specific
applications such as signal processing;

o Termina access host, each of which provides a number
of users with terminal access to the DOS;

o User work station h which are each dedicated to a
single user and provide both local computing and access
to the other DOS resources.

o A gateway host which functions to link the DOS cluster
to other networks and clusters.

S-7



The DOS acts to coordinate the operation of the collection of

hardware for the local network cluster.

We specified the DOS software architecture from three

different but related viewpoints:

o The rogramming i, which is concerned with the
features provided to application programs by the DOS;

0 The usir i, which is concerned with the features
provided directly to human users of the DOS;

0 The implementation, which is concerned with the major
software modules and the interactions among them that
are required to implement the DOS features.

In addition, we described how the DOS software architecture

operates to support several common user scenarios.

The purpose of the DOS reliability system is to ensure

reliable operation of the system and to provide mechanisms at the

programming interface which can be used to construct reliable

application software. Failure recovery is an important function

of the reliability system. We found it useful to divide recovery

into three parts:

1. Failure detection.

2. Reconstitution, whereby recovery is initiated by
organizing the remaining operational resources into a
functional system.

3. Reconciliation, which occurs after failed components
are restored and integrated back into the system, and
involves reconciling with the failed components the

S-8
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results of any operations effecting the failed
components that were performed while they were
inaccessible.

The responsiblity of the recovery system is to ensure that the

DOS operates in a way that makes reconstitution possible, and

that recovery actions occur in a way that makes reconciliation

feasible.

The basis of the DOS recovery system is a design principle

and a carefully integrated set of reliability techniques. The

deaign g is:

A side effect of the normal operation of the system
should be the generation and placement of information
that makes recovery oprations possible.

The reliability techniques are:

o Redundant processing capability
o Redundant sources of critical data
o Self-identifying data
o Selective checkpointing
o Hierarchies of recovery agents

In addition to developing a design for the DOS reliability system

we illustrated by means of a number of examples how the

reliability techniques in the design work together to ensure

system reliabilty, and how they can be used to develop reliable

applications.

When we surveyed the area of global resource management we

S-9
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discovered that, unlike reliability, very little work had been

done in the area. During this study we focused on distributed

resource management from three perspectives.

1. Formal specification of resource management policies.

Without a clear and unambiguous statement of goals it
is difficult to discuss the suitability of various
global resource management mechanisms. We believe that
most resource management policies can be conveniently
described in terms of two elements: p and
relai service. For this part of the effort we
developed formal definitions for four different
resource management policies: non-preemptive priority,
preemptive priority, non-preemptive relative service,
and preemptive relative service. The policies were
formulated in terms of criteria for sequences of
resource request and resource grant events. They were
formulated first for central site systems and then
extended for distributed systems. The effects of
distribution on the formal policy definitions were:

a. A time ordering of events at different sites is
not readily available in a distributed system,
but must be deduced from observations.

b. Message transmission may be long, making it
unrealistic to model message transmission by a
single event.

These factors contribute uncertainty to the time
ordering of resource allocation events, complicating
tests for policy compliance.

2. Specification of distributed resource management
algorithms.

Implementation of a distributed resource management
scheme requires an algorithmic description of its
operation. Several hosts may need to cooperate to
ensure proper coordination of information about the
state of the resource, its users, and its requests. We
investigated the structure of distributed resource

S-10
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management algorithms by detailing four example
algorithms that implement a non-preemptive priority
management policy. We demonstrated that each
algorithm, in fact, implements the non-preemptive
priority policy, and compared and contrasted them with
respect to a taxonomy of the design space.

3. Performance benefits of load sharing and priority
resource management in distributed systems.

Load sharing is often suggested as a means for
improving the performance or increasing the capacity of
a distributed system. However, before investing the
effort to implement load sharing, convincing evidence
should be found to justify the effort. One objective
was to quantitatively study the benefits of load
sharing. Another objective was to study the effect of
preemptive priority resource management on response
times and resource utilization. Our approach was to
compare queueing system models of distributed systems,
both with and without global assignment of tasks to
processors, over a range of model parameters. For the
simplest cases we were able to obtain analytic results.
For more complex cases we used discrete event
simulation, first validating the simulator on the cases
for which we had obtained analytic results. The major
direct findings of this study are that (for the models
and work loads used) load sharing is always beneficial,
but in many cases only modestly so, and that preemptive
priority management in a distributed system is very
effective in providing preferential treatment to
certain users.

In each case we proceeded from general issues to specific

examples, and tried to present a framework that will be useful

for further research.

Experience has shown that some operating systems are much

easier to integrate into a DOS than others. Part of this study

attempted to identify operating system features that make it

relatively easy for a host to function as a constituent host in a

S-11
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DOS. The following is a list of system characteristics or

features which facilitate integration of a host into a DOS. The

features on the list are not strictly independent of one another.

They are listed roughly in order of decreasing importance.

1. The network should be integrated into the system as a
"standard" device, and al. communication functions
supported by the network should be accessible to
application programs.

2. The system should be extensible. It should be possible
to modify and augment the standard "system" functions
by application level software in a way that is
efficient and is transparent to users of the "extended"
system functions.

3. The system should implement the notion of process in a
way that permits application level software to create
and manipulate processes. Processes should be
relatively inexpensive to use.

4. The system should provide an efficient mechanism for
communication among processes that reside within the
same user "jeb" or that reside in different user
"jobs".

5. The system should support "device independent" i/o in
the sense that a process should be able to do certain
"generic" i/o operations (e.g., read, write) with a
device or with another process as a source or
destination without detailed knowledge of its
characteristics. Of course, device dependent i/o
operations should also be supported.

6. The system should provide means for a process to
reliably determine when data output to non-volatile
(e.g., disk) storage has actually been successfully
written onto the storage medium. This feature is
important as the basis for a number of reliability
mechanisms.

7. The system should provide means for (properly
authorized) processes to control system resource
management decisions. For example, a process

S-12
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designated by a user should be able to assign
(relative) priorities for other processes belonging to
the user.

There are ti'o system design philosophies which are perhaps

as important as these specific features. The first is to

recognize that system resources may need to be used in ways other

than those anticipated by the system designer, and to design the

system to facilitate or at least not prevent such use. The

second is that the system should acknowledge that activities can

occur outside of its direct control. For example, users may be

authenticated by other hosts, and the host system should (with

proper precautions) be prepared to accept such authentications.

As a result of this study we conclude the following:

o Reliability mechanisms appropriate for use in
distributed systems have been studied thoroughly in
isolation and apart from implementations. In addition,
this study developed a design for an integrated
reliability system for a DOS. We believe that the next
step should be to develop prototype implementations in
order to experimentally verify the effectiveness and
measure the performance and overhead of integrated
reliability systems, such as the one formulated in this
study.

o Resource management and scheduling for distributed
systems is a relatively unexplored area. This study
made progress in the area but more research is needed
before a unified treatment of resource management for
distributed systems can be developed.

o Operating system features that make it relatively easy
to integrate a host into a DOS are reasonably well
understood

S-13
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In addition, we make the following recommendations:

o The extent to which system functionality may need to be
limited during failure recovery in order to make
reconciliation possible should be investigated.

It is clear that one type of system degradation during
failure mode operation results from limitations placed
on certain aspects of system functionality. For
example, although it may be possible to allow a user to
create files when the host responsible for maintaining
his file directory is inaccessible, the user cannot be
given complete freedom in naming new files if
reconciliation is to be possible when the directory host
is again accessible. What is less clear are the ways in
which and the extent to which system functions need to
be limited in order to permit reconciliation.

o An effort tc integrate support for reliability
mechanisms into programming languages should be
undertaken.

Apart from exception handling, current programming
languages provide little support for reliability
mechanisms. Language support for checkpointing is
mentioned below. In addition, a language might support
the notion of redundant or alternate sources of
processing and data by facilitating the retrying (i.e.,
re-execution) of a "block" of code, possibly with
slightly different parameters. A possible approach here
would be to explore how support for reliability
mechanisms might be integrated into a modern language
such as Ada. Part of this effort should focus on
developing a better understanding of the tradeoffs
between additions of reliability features to a language
(and its runtime support system) and application code
implementations of reliablity mechanisms.

o Means should be developed for declaring the extent of a
process state that needs to be saved as a checkpoint
state for recovery purposes.

The cost of the checkpoint/restart recovery mechanism is
related to the size of the process state that must be
saved. In many situations it is not necessary to save
an entire process state (i.e., the entire process
address space, internal registers, etc.) in order to be
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able to restart it. Furthermore, the parts of the state
that need to be checkpointed may change as the process
executes. Means should be provided, perhaps through a
declarative statement in the programming language used
to implement a process, to declare the extent of the
checkpointable state.

o Programming language support for distributed application
programs should be investigated.

With current programming languages, the division of an
application program into multiple parts for
distribution, and the location and interconnection of
distributed components must be expressed in an ad b.~
manner outside of the programming language. As a
result, compiler checking and optimization techniques
are not applicable to the distributed components, the
modularization of the multiple components is fixed and
difficult to alter, and similar approaches to dealing
with distributed components are re-invented for each
application program. Programming language features for
expressing the modularization, interconnection and
interaction between distributed components of an
application program would represent a significant
advance in the state of the art.

o Mechanisms for authentication, access control,
protection, and privacy for distributed systems should
be investigated.

Relatively little work has been done in the area of
access control and protection for distributed
environments. As we developed the DOS architecture used
for this study, we had difficulty formulating an
approach to access control. Authentication of an entity
making a request for access to data or a service is
central to access control. Reliable authentication of a
remote entity is difficult in a distributed environment.
Public key encryption has been suggested by some as a
good basis for access control and protection in
distributed systems. However, more work is required to
develop an approach based on it. Furthermore, given the
current state of the art, encryption and decryption
using public keys are expensive operations, and may be
impractical for operational use in access control and
protection mechanisms. We believe this is a very
important area where further research is needed.
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o The development and formulation of resource management
policies should be further investigated.

This study developed a formalism for specifying resource
management policies and then used it to define four
different policies. There are many other policies which
may be of interest. Further work is required to
identify important policies and to represent them in a
formalism such as developed in this study.

o An effort to develop user models of resource management
policies should be undertaken.

Computer users see a system from perspectives related to
their tasks. A user should not have to understand low
level system mechanisms to know what to expect of a
given resource management policy. While this is a
clearly desirable goal, it is typically not achieved by
contemporary systems.

o More comprehensive performance analysis of resource
management mechanisms for distributed systems should be
undertaken.

Simulation and/or analytic models can be used to
evaluate the performance properties of resource
management mechanisms. We believe that the work in this
study represents a good basis for further research in
this area.

The rest of this report presents the results of the DOS

Design Study in detail. Appendix A is the first interim

technical report for the study, and Appendix B is the second

interim technical report.

S-16

I



APPENDIX A
INTERIM TECHNICAL REPORT 1



TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Purpose of Phase I of the Study 1
1.2 Emphasis on Reliability, Resource Control and 3

Constituent Host Features
1.3 Structure of Report 6

2. ASSUMPTIONS 9

2.1 Introduction 9
2.2 Environment 9
2.3 Application Characteristics 13
2.4 Failure Modes 16
2.5 Other DOS Issues 18

3. REQUIREMENTS OF CHARACTERISTIC APPLICATIONS 21

3.1 Introduction 21
3.2 Three Examples of Distributed Systems 26
3.3 The Field Command Unit 28

3.3.1 Overview 28
3.3.1.1 General Description 8
3.3.1.2 Similarity to Other Systems 31

3.3.2 System Topology 31
3.3.2.1 Hardware Components 31
3.3.2.2 Task Assignments 33

3.3.3 Apr ication Requirements 35
3. .1 Response Times 35
3.' .2 Data Rates 35
3.3.3.3 Reliability Requirements 35

3.3.4 Appraisal 36



3.4 Air Traffic Control 38
3.4.1 Overview 38

3.4.1.1 General Characteristics 38
3.4.1.2 Similarity to Other Systems 42

3.4.2 System Topology 42
3.4.2.1 Hardware Components 42
3.4.2.2 Task Assignments 45

3.4.3 Application Requirements 47
3.4.3.1 Response Times 47
3.4.3.2 Data Rates 48
3.4.3.3 Reliability 48

3.4.4 Appraisal 49
3.5 A Military Message System 51

3.5.1 Overview 51
3.5.1.1 General Characteristics 51
3.5.1.2 Similarity to Other Systems 52

3.5.2 System Topology 53
3.5.2.1 Hardware Components 53
3.5.2.2 Task Assignments 55

3.5.3 Application Requirements 56
3.5.3.1 Response Times 56
3.5.3.2 Data Rates 57
3.5.3.3 Reliability Requirements 58

3.5.4 Appraisal 59

4. RELIABILITY MECHANISMS AND THEIR APPLICATION TO 61
DISTRIBUTED SYSTEMS

4.1 Introduction 61
4.2 Focus of Study 64
4.3 Definitions 65

4.3.1 Terms 65
4.3.2 The Purpose of Reliability Mechanisms 67

4.4 General Requirements and Capabilities of 68
Reliability Mechanisms in Distributed Systems

4.4.1 Probabilistic Success of Operation 68
4.4.2 Application Requirements and Mechanism 70

Capabilities
4.5 State of Current Technologies for Providing 78

Reliable Operation
4.5.1 Introduction 78
4.5.2 Generic Approaches to Error Recovery 79
4.5.3 Generic Techniques Used in Specific 85

Reliability Mechanisms

- ii -



4.5.3.1 Introduction 85
4.5.3.2 Redundancy: Data and Control 87
4.5.3.3 Atomicity 88
4.5.3.4 Isolation of Partial Results 89
4.5.3.5 Permanence of Effect 90
4.5.3.6 Restoration of Acceptable State 91
4.5.3.7 Bounding the Time During Which a 92

Fault Causes Problems
4.5.3.8 Use of Timeouts 93
4.5.3.9 Summary 93

4.5.4 Specific Techniques 94
4.5.4.1 Introduction 94
4.5.4.2 Checkpoint/Restart 95
4.5.4.3 Atomic Transaction 96
4.5.4.4 Log, Journal, Stable Storage, Audit 100

Trail
4.5.4.5 Intentions List, Differential File 104
4.5.4.6 Recovery Cache 105
4.5.4.7 Salvation Program 107
4.5.4.8 Careful Replacement Algorithms 109
4.5.4.9 Two Phase Commit 110

4.6 Integrated Approaches to Reliability in Distributed 112
Systems
4.6.1 Tandem Guardian Operating System 112
4.6.2 IBM System R 114
4.6.3 Other Integrated Systems 116

4.7 Summary of the New Reliability Requirements and 118
Capabilities of Distributed Systems
4.7.1 Independence of Failure 118
4.7.2 Need for Coordination 121
4.7.3 Need for Flexible Bindings 124

4.8 Areas of Incompleteness 131
4.8.1 Integration 131
4.8.2 Appearance of Reliability Mechanisms in a 134

Programming System
4.8.3 Coordination between Components 136
4.8.4 Flexible Bindings 137

5. GLOBAL RESOURCE MANAGEMENT 139

5.1 Introduction 139
5.2 Terminology and Fundamental Concepts 143

5.2.1 Processes and Resources 143
5.2.2 Resource Management 147
5.2.3 Policies and Mechanisms 150

- iii -

• I I



5.3 The Importance of Time 152
5.3.1 Grain Size: Days, Weeks, Months 155
5.3.2 Grain Size: One Day 156
5.3.3 Grain Size: Several Hours 156
5.3.4 Grain Size: Several Minutes 156
5.3.5 Grain Size: One Second 157
5.3.6 Grain Size: Ten Milliseconds 158
5.3.7 Policies and Time 158

5.3.7.1 An Informal Definition of the Pie- 160
Slice Policy

5.3.7.2 Moving Time Averages 161
5.3.7.3 A precise Statement of the Pie- 162

Slice Policy
5.3.8 A Design Principle 162
5.3.9 Example 163

5.4 The Formulation of Policies 166
5.4.1 Objective Functions and the Concept of 168

Utility
5.4.2 The Elements of Policies 170

5.4.2.1 External Administrative Goals 170
5.4.2.2 Internal Administrative Goals 171
5.4.2.3 User's Goals 172

5.4.3 The Interplay of Goals 173
5.5 Resource Management Issues in Distributed Systems 174

5.5.1 The DOS Client Interface 176
5.5.1.1 Visibility of Distribution 176
5.5.1.2 Resource Subsets 178
5.5.1.3 Performance and Reliability 181
5.5.1.4 DOS Operations for Resource Control 182

5.5.2 The Implementation of Managers 185
5.5.2.1 Centralized Manager Implementation 185
5.5.2.2 Distributed Manager Implementation 186
5.5.2.3 The Maintenance of Resource State 187

Information
5.5.2.4 The Transmission of Authority 188

5.6 Strategies for Global Resource Management 189
5.6.1 Static Priorities 189

5.6.1.1 Priority-Based Policies 189
5.6.1.2 Mechanisms for Static Priorities 192
5.6.1.3 Priority and Utilization 194

5.6.2 Time Multiplexed Tasks 195
5.6.2.1 The Policy as a Form of Reservation 195
5.6.2.2 Mechanisms for Time Multiplexing 197
5.6.2.3 Clock Synchronization 198

- iv -



6. COS FEATURES FOR EXTENSIBILITY 201

6.1 COS Design Versus Retrofit 205
6.2 COS Extensibility Needs 207

6.2.1 Process Structuring and Messages 207
6.2.2 Directory Services 211
6.2.3 Resource Control 212
6.2.4 Authentication and Access Control 214

6.3 Enhancement vs. Elevation 215
6.3.1 Abstract Types 217
6.3.2 Enhancements 220
6.3.3 Elevations 222

6.4 Subsystems 227
6.5 Design Issues 229

6.5.1 Transparency 229
6.5.2 Economics 231

6.6 Recommendations 232

7. PLAN FOR PHASE II 235

7.1 Characterization of task 235
7.2 Reason for performing task 235
7.3 Topics to be investigated 236
7.4 Expected Benefits and Results

. v



1. INTRODUCTION

1.1 Purpose of Phase I of the Study

Distributed systems are now a reality: it is rare that a

single computer system is acquired without any plans for

connecting it to some other computer system or computer

communications network. Technology has advanced to the point

where it is currently feasible to build computer systems out of

many smaller computer systems. Such an approach is attractive

for many reasons, some of which are:

o Economics.

The effort expended in building current operational
systems must not be lost. Quite often the function of a
new distributed system is to integrate information
gathered or processed by several existing systems.

o Reliability.

Distributed systems built out of autonomous components
provide alternatives in the event of a failure. *By
eliminating single critical failure points, distributed
systems can be made more reliable than single component
systems.

o Scalability.

Building a system out of repeatable parts makes it
possible to adjust the size of a system without
reprogramming all of the parts.

o Inherent Separation.

Some applications must deal with parts that are not
physically close together. Many times there is no
alternative to building these systems out of separate
parts.
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Distributed systems that realize these benefits have not, in

general, been realized for two basic reasons. First, the

coordination required to make multi-component systems operate in

the manner described above has not been developed in a general,

integrated fashion. For example, there is little coordination in

the use of resources across the component systems of a

distributed system. Second, some of the approaches to solving

problems of an application that are feasible with distributed

systems have not been feasible before. The necessary concepts

and mechanisms for taking full advantage of the capabilities of

distributed systems need to be developed. For example,

autonomous operation of replicated parts of an application has

only recently been possible through significant advances in

computer interconnection technolcgy. The models and mechanisms

developed for single host applications do not address replication

of parts nor how to use replicated parts in a general way.

Thus, usable distributed systems are more than connections

between separate computer systems. For successful sharing of

resources to be achieved among the users of a distributed

computer system, there must be programs (or parts of the

operating system) whose purpose is to manage the allocation and

sharing of resources among the multiple components of the

-2-
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distributed system. This is the purpose of a Distributed

Operating System (DOS).

The Distributed Operating System Design Study is aimed at

investigating issues encountered in the development of such

operating systems. This report describes the results of Phase I

of the Study in which requirements of characteristic applications

and existing techniques for providing both reliable and

coordinated access to distributed resources have been examined.

In Phase II we will investigate some of the unsolved issues

discovered during Phase I.

1.2 Emphasis on Reliability, Resource Control and Constituent
Host Features

Two specific problems associated with existing distributed

systems are the lack of global management of resources and the

absence of integrated reliability and error recovery mechanisms.

The issue of global scheduling first came to our attention in the

context of the National Software Works (NSW) [8], a distributed

operating system. We observed that one of the reasons the

performance of NSW suffered was that there was no coordination

among the NSW constituent hosts concerning the allocation of

processor resources to NSW components. For example, if the Works

Manager and the Foreman components were going to engage in an
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exchange of information, then the scheduling of these two

processes should be coordinated so that they would receive

processor resources at (or about) the same time. This example

illustrates a general problem that distributed system designers

must address: the uncoordinated management of component system

resources. Processor resources are just one type of resource

that needs to be allocated according to the global needs of a

distributed application. One objective of Phase I of the DOS

Design Study has been to investigate solutions to the distributed

resource allocation problem that provide ways for component hosts

to exchange information about the resource requirements of

distributed computation. These solutions can also serve as the

basis for more global control of distributed resources.

While distributed systems can provide increased

functionality over their single host counterparts, they

frequently display only marginal improvement in system

reliability and noticeably worse performance characteristics. A

natural approach to distributed system design is to pattern these

systems after more familiar single host systems. This has often

led to "in series" or tree structured connection of components

which frequently results in single component failure points and

performance bottlenecks. Reliability mechanisms that have been
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developed for distributed systems are usually designed to solve a

specific problem without general purpose functionality, or are

difficult to integrate with other system mechanisms.

Improvements in the capability to recover from errors in

distributed systems will require new models of usable programming

primitives. These models will exploit the natural strengths of

distributed systems such as redundancy, parallelism, broadcast

capabilities, and relative ease of reconfiguration. A second

objective of the DOS Design Study has been to investigate

solutions to problems of reliability which not only make use of

such natursl strengths but which also can be integrated with

other distributed system mechanisms.

Distributed systems must ultimately be implemented out of

the features and capabilities provided by the constituent hosts

of the system. A problem associated with many underlying host

operating systems is that they do not allow the resources they

manage to be used in any way other than that built into the

operating system. For example, most single host operating

systems provide file resources for use by application programs.

These files are organized by a naming scheme that has a well

defined syntax. Few operating systems allow for any alternative

file naming syntax as might be required to support a distributed
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operating system that is built from multiple heterogeneous

constituent hosts. A third objective of the DOS Design Study has

been to characterize the set of capabilities that need to be

supplied by the operating systems of the constituent hosts that

are part of a distributed operating system.

1.3 Structure of Report

The results of Phase I of the study are presented in detail

in the remainder of this report. Figure 1 illustrates the

relationships between the chapters of this report. Chapter 2

describes the assumptions about the components, their

interconnection and probable modes of failure. In Chapter 3, we

describe three characteristic applications that could be

implemented on top of a DOS. This description is intended to

illustrate the diverse requirements of realistic application

programs. Chapter 4 contains the results of our investigation of

reliability mechanisms and their application to distributed

systems. In Chapter 5 we consider global resource allocation

requirements and possible strategies. The underlying features of

a Constituent Operating System (COS) are the subject of Chapter

6. Several problems associated with reliability mechanisms and

global resource control that are still outstanding serve as the

basis for our continuing work in Phase II of the DOS Study. A

-6-
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plan for Phase II is presented in Chapter 7.
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2. ASSUMPTIONS

2.1 Introduction

The purpose of this chapter is to establish a context for

the DOS Design Study by specifying an environment in which DOSs

of interest must function, and by identifying the characteristics

of the applications they should support.

2.2 Environment

The environment consists of clustrs of host computers.

Hosts within a cluster are separated by distances of up to a few

kilometers, and are interconnected by means of a high speed local

network (see Figure 2). The clusters are distributed over

distances of tens to thousands of miles, and may communicate with

one another by means of a geographically distributed network.

The details of the networks are not important to this

project. However, some of the network characteristics are.

The intra-cluster network is assumed to operate in the 1-5

MB/sec range. Thus, while communication at high speed and with

low delay between hosts can occur, communication within a host is

several times faster. The Ethernet developed at Xerox Palo Alto

Research Center [37] and the ring network developed at the
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Figure 2. Interconnection of Clusters
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University of California at Irvine [14] are examples of local

networks of this type.

The network supporting communication between clusters is

assumed to operate at lower data rates. Inter-cluster data rates

in the 10-50 KB/sec range and inter-cluster delays in the 100

msec to 1 sec range are assumed. The ARPA network [521 is a

good example of such a network.

The way these network characteristics are accomplished is

not important to this study. Inter-cluster communication might,

in fact, be supported by more than one network. Similarly,

intra-cluster communication might be accomplished using several

different communication media. However, for simplicity we shall

speak of a single network within a cluster, and a single

inter-cluster network.

We assume a standard addressing scheme for hosts which

permits a host to address any other host in a uniform fashion

regardless of whether the host addressed is in another or the

same cluster.

The focus of this project is the activity that occurs inside

a cluster. We assume that the clusters exhibit a great deal of

autonomy with respect to one another at tie system level.
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Inter-cluster communication is assumed to occur infrequently

relative to intra-cluster communication. When inter-cluster

interactions do occur they usually fall into one of two major

categories: access of data stored in another cluster or

person-to-person messages between users of different clusters.

Another way to say this is that the DOSs of interest for this

study are operating systems for a cluster.

The host computers within a cluster are assumed to be of

different manufacture and range from single-user to shared

machines. Each host has its own operating system, assumed to be

different from host type to host type. The operating systems are

assumed to be state-of-the-art systems which have been augmented

to operate in a network environment in the sense that each

provides facilities for communicating with other hosts. However,

any higher level inter-host functions are assumed to be functions

provided by a DOS.

The size of a cluster may vary in terms of the number of

users it must support, the number of functions it must provide,

and, possibly, the amount of hardware redundancy it incorporates

to achieve system reliability goals. Thus, the DOS for a cluster

must permit modular expandability in the sense that it should

allow clusters to be configured with a variable number of hosts.

- 12 -



2.3 Application Characteristics

Most activity within a cluster is assumed to be initiated by

users at interactive terminals, and most of the applications are

assumed to be interactive in nature.

Users within a cluster are assumed to be working toward a

common set of goals. However, at the system level it is

necessary to think in terms of multiple independent applications.

Some activities may be deemed more important than other

activities. Thus, tasks may have different priorities.

Furthermore, task priorities may change dynamically.

Timely completion will be important for certain activities.

By this we mean that some activities will have associated with

them a time by which their results are needed. If the results

are not produced by that time, the value of the results, and thus

of the activity itself, is likely to decrease significantly.

Note that by "timely completion" we do not mean real time

processing.

Much of the activity within a cluster can be characterized

as office automation. By this we mean that the cluster resources

are used to maintain online, and to process, information required

to support the mission of the cluster user community. More

- 13 -

9



specifically, much of the cluster activity is document

preparation, filing, simple computations, checking and modifying

information in databases, form processing, intra-cluster

person-to-person communication, and inter-cluster

person-to-person communication.

We distinguish office automation applications from more

traditional a processing applications in the following way.1

A data processing system is used to implement a single locus of

control which is a single component, not a collection of

autonomous parts; the algorithm ordinarily proceeds without the

need for human intervention. Typical data processing systems

compute payrolls, implement accounting systems, or manage

inventories. The office automation applications are made up of

collections of highly interactive autonomous tasks that execute

in parallel or at least asynchronously; these tasks include

document preparation, document management, ;.1mmunication and aids

for decision making.

Electrcnic mail will be an important application. Within a

1The remainder of this paragraph paraphrases the distinction
between data processing and office automation suggested by Ellis
and Nutt [11).
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cluster it will be used as the basis for coordinating user

activity. It will also serve as the means for interactions

between users in different clusters. Many cluster tasks will be

database intensive; various databases will be queried and updated

as tasks proceed. Some applications will involve situation

displays, where the information displayed is generated by the

results of database queries and the execution of application

programs.

In addition to office automation applications, the cluster

can be expected to support some traditional business and

scientific data processing applications.

We assume that the ability to support real time processing

is not a DOS requirement. More specifically, we assume that the

cluster DOS will not need to meet real time processing

requirements, but that it,-or applications it supports, may deal

with the results of real time processing. That is, processors

that provide real time processing services must be able to be

integrated into the cluster DOS, but their real time behavior

must be ensured by their host operating systems and not by the

DOS. Chapter 3 discusses application characteristics in more

detail and describes three example applications.

- 15 -
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2.4 Failure Modes

System failure recovery and reliability mechanisms are, of

course, designed to deal with a set of expected failures. The

failures of interest to this project fall into two areas: host

outages and communication outages. Mechanisms for recovering

from program errors are not of interest in this project, except

to the extent that such errors are indistinguishable from other

failures.

Individual hosts within a cluster may fail. We assume that

the hosts are sufficiently isolated by hardware and operating

system software to ensure that the failure of one host will not

directly cause the failure of another. Hosts generally are

configured with two types of memory. For v memory (e.g.,

semiconductor memory), the contents are lost after a host outage.

For n=n-volatil memory (e.g., disk), the contents usually remain

intact after an outage. Occasionally the contents of

non-volatile memory will be lost as the result of a host crash.

In such cases, the memory will be restored to a previous state.

We assume that DOS software will be able to detect when such a

backup occurs. Hosts may remain unavailable for extended periods

for maintenance or offline fault isolation. We assume a host

mechanism which can accomplish "clean" shutdown.

- 16 -
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Communication within a cluster may fail, causing some hosts

to be unable to communicate with other cluster hosts. The

network may occasionally fail to deliver a message to a host; for

such intermittent failures the next message is likely to be

successfully delivered. Longer term communication outages,

characterized by periods during which no communication between

sets of hosts may occur, can also be expected. Outages of

inter-cluster communication can also be expected.

Host and communication outages can be characterized as

permanent or temporary in terms of their duration relative to

various DOS transactions. This characterization is related to

the timeliness criteria for transactions. A permanent outage is

one which persists for the duration of a transaction. That is,

the failed component will not be re-integrated into the DOS

before the transaction must be completed. Some transactions,

because of their timeliness criteria, will not be able to wait

for the restoration of failed communication or host services.

This suggests that partial results or alternative sources of

services or data should be used to complete these transactions.

Other outages will be temporary in duration with respect to

transactions in that the failed components will be restored to

the system before the transaction must be completed.

- 17 -
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The DOS should incorporate means to accomplish two somewhat

different types of failure recovery. One would work to ensure

transaction completion when failed resources required for a

transaction become available. The other would have the goal of

ensuring partial completion of transactions in a timely fashion

by using partial results and alternative sources of data and

processing. In practice, choosing the appropriate type of

recovery for a transaction will involve an assessment of the

expected duration of the outage(s) relative to the nature of the

transaction and its timeliness criteria. This may be difficult,

and for some transactions it might make sense to initiate both

types of recovery. Chapter 4 discusses failure modes in more

detail as well as generic and specific approaches for dealing

with failures.

2.5 Other DOS Issues

There are other important DOS design issues in addition to

those that are the subject of this project. These include:

o Communication security for intra-cluster and
inter-cluster communication.

o Multi-level security within hosts and across hosts
within a cluster.

o Access control within hosts.

o User and process authentication.

- 18 -
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This study will not directly address these issues. We shall

assume mechanisms exist or will be developed that address them

adequately, and that are compatible with the approaches to

reliability and resource allocation which are the focus of this

project.

-19-
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3. REQUIREMENTS OF CHARACTERISTIC APPLICATIONS

3.1 Introduction

Early in the study we discovered that in order to make

realistic decisions about the effectiveness or applicability of

various mechanisms, we needed some examples of the demands placed

on these mechanisms and constraints on the resources available to

a mechanism. As a result, we have developed descriptions of

three hypothetical examples which provide a framework for the

discussion in the rest of this report, as well as for subsequent

work in the design of distributed operating systems. Readers

familiar with the possible alternative requirements of

applications may skip this chapter and proceed to Chapter 4 where

reliability mechanisms are discussed.

We emphasize the aspects of these systems that are common to

many application areas, rather than the specific designs. The

three examples have been chosen to reflect a broad array of

design constraints with respect to system performance, cost,

reliability, and modularity. Finally, we have purposely assumed

that each of the example applications is built on a distributed

hardware base.

The most significant features of the systems differ along
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four dimensions: survivable vs. restartable operation; batch vs.

interactive service demands; tightly vs. loosely coupled

communication; and imposed priority vs. marketplace resource

management.

Survivable vs. restartable operation. Reliability

requirements vary in detail from one application to another, but

can generally be grouped into two categories: survivable

operation, which seeks to maintain continuous service in the face

of component failures; and restartable operation, where some down

time can be tolerated if a procedure exists for the smooth

resumption of automatic processing when the component has been

repaired or replaced. Examples of survivable systems can be

found in military tactical systems, especially avionics [23, 711.

Survivable systems must employ redundancy of components to

achieve continuous operation, and thus pay a clear cost penalty

for reliability.

Often the additional cost of redundant processors and memory

is not justified, and it is sufficient to accept some down time

when a failure occurs. In this case it is particularly important

that the system can be brought up-to-date automatically when

repairs have been made, and that the system reaches a consistent

state when it is restarted. Manual procedures may be necessary

-22-
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to support the application while the computer system is

unavailable, and these manual procedures should be developed

concurrently with the computer system software.

Batch vs. interactive service. Batch systems usually

involve long processing runs against large, possibly distributed,

databases. Batch runs are often scheduled in advance to run

during periods of low system utilization (at night, on weekends),

and are often periodic in nature (daily, weekly). Response time

is not a critical constraint in batch processing and in the event

of a system failure it is enough to restart a run from its most

recent checkpoint when the system is again available.

Interactive systems place much higher demands on response time.

Some late responses are acceptable if the mean response time is

small enough. Interactive requests are more frequent than batch

and tend to be less predictable in terms of resource demands than

batch requests. Because it is difficult to automatically select

opportune checkpoints, recovery from failures is left largely- in

the hands of the users. At the minimum a positive indication of

a failure should be supplied to the user, and some facility to

limit the ariount of work that can be lost due to a failure should

be present.

Tightly vs. loosely coupled communication. Applications
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which are structured as multiple communicating processes are

characterized as t coupled if processes stop frequently,

waiting for messages from other processes to proceed. Processors

are tightly coupled if they can sustain a high bandwidth data

transfer among themselves, with low startup delay. If a tightly

coupled application is constructed on loosely coupled processors,

the result may be poor performance.

For our purposes, we consider systems to be tightly coupled

if they achieve a network throughput one to two orders of

magnitude below the primary memory bandwidth of individual

processors. By this criterion l networks exemplified by the

Ethernet (371, the DCS Ring [71] and Cambridge Ring [72] are

considered tightly coupled systems. Local networks often employ

radio-frequency carrier broadcast techniques, and at present are

restricted to maximum diameters of about 3 kilometers. Local

networks transmit messages with low error rates, permitting large

block sizes and relatively simple error detection and

retransmission protocols. The cost of a local network is a

simple function of the number of attached units.

Loosely coupled systems usually rely on shared communication

services, such as switched or dedicated telephone lines. The

bandwidths obtainable are about three to six orders of magnitude

- 24 -
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below the primary memory bandwidth of contemporary processors;

cost rises rapidly with bandwidth. The physical distance

separating communicating units may be thousands of kilometers, or

in the case of satellite links, tens of thousands. The cost of

communication is a complex function of distance, data rate,

volume of data, connection time, and other factors, and can be a

substantial fraction of the total system operating cost. Shared

networks have higher error rates than local networks, and this

necessitates more elaborate error detection and handling schemes.

Because shared communication networks serve many customers with

different needs the interface protocols between hosts and the

network may be complex (e.g., the X25 interface [541).

Imposed priority vs. marketplace resource management. In

many systems, particularly real-time and process control,

administrative control over the utilization of resources by

different tasks is essential. Process control systems are

usually constructed with a rigid priority structure for

dispatching time-critical tasks; these priorities reflect the

damage which might result from failure to complete the tasks on

schedule, as seen by the system administrator.

Other situations make it difficult or impossible to rank the

importance of tasks competing for system resources (timesharing

- 25 -
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systems are a good example). In this case some form of

marketplace economics may be appropriate, where system users pay

for the consumption of resources in real or fictitiou5 monetary

units. A popular strategy is to treat the computing facility as

a cost center, and attempt to maximize the utilization of system

resources in order to minimize the cost per unit of computing to

facility customers. This strategy is an extreme view, ignoring

external priorities entirely for the common good.

3.2 Three Examples of Distributed Systems

In the sections below three examples of distributed systems

are given in detail. They illustrate a broad range of military

and commercial systems, present and anticipated, but should be

regarded as completely hypothetical designs. The application

area is briefly described for each system, and then a partial

implementation is proposed. In subsequent chapters we will

discuss many more implementation issues with regard to

reliability, global scheduling and the support of distributed

computations by host operating system primitives.

We caution the reader to consider these systems as

representative, not as the sole systems to which our later

results can be applied. Many of the details presented below are

- 26 -
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present only to enable a concrete discussion of the issues, and

promote a sense of familiarity for the reader.
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3.3 The Field Command Unit

3.3.1 Overview

3.3.1.1 General Description

The hypothetical Field Command Unit (FCU) is the closest

general-purpose data processing element to actual military

operations. Staffed by a Command Officer and a team of

specialists in intelligence, logistics, air support, etc., the

FCU commands and coordinates a combined air and ground force of

several thousand people. The FCU is physically small and highly

modular so that it can be airlifted and made operational within

hours of a deployment order.

Modularity is a prime requirement of the FCU. The size of

the combat force, equipment engaged, and distance from supply

bases, among other factors, will affect the makeup of an FCU and

its team. In order to achieve the high degree of adaptability

desired, an FCU is structured as a local communication bus called

the spine and a collection of modules which attach to the spine

and interact through it. A wide variety of modules are available

for inclusion in a particular FCU; some are dedicated to a single

function, for example high-speed signal analysis, while others

are more general purpose and can be dynamically allocated by the

FCU DOS.
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A centralized warehouse facility located near an air base

maintains an inventory of FCU components. Given the required

capabilities of a specific FCU, the warehouse personnel use an

automated configuration system to select the appropriate modules.

For example, if the requirements include "participate in Autodin"

the configuration system would select the necessary communication

modules to interface the FCU to the Autodin network. Figure 3

shows the components of an FCU configured to permit packet radio

communication, satellite communication, data encryption/

decryption, and to support a team of several specialists.

The modular approach exhibits flexibility not only in the

range of function and capacity possible in an FCU, but also in

the level of reliability attained. An FCU deployed for combat

can be configured for high-reliability by including redundant

components (including duplication of the spine itself) and

adaptation of the DOS protocols to achieve fault tolerance and

restartable operation. This mode of operation is produced by the

configuration procedure at the warehousing facility. An FCU can

be configured without the redundant components, for greater cost-

effectiveness in systems used for training, maintenance, or

installations not in the chain of command of combat forces.

- 29 -
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3.3.1.2 Similarity to Other Systems

The FCU has some features in common with advanced C3 systems

being developed for the Tactical Air Force. The concepts of

modularity and standardization through the interface to a

communications medium are the keys to lowered lifecycle costs and

improved utility for systems in a tactical environment.

The structure of an FCU is reminiscent of several personal

computer networks in use or under construction today at Xerox

Palo Alto Research Center, Massachusetts Institute of Technology

Laboratory for Computer Science, Carnegie Mellon University

Computer Science Department and Bolt Beranek and Newman, Inc. It

differs in that the unit of modularity of the FCU is rather small

(e.g., processors and secondary storage units are separate

modules) and the FCU spine is intended to be utilized heavily

during normal system operation. A single FCU module is usually

not capable of significant function independent of services

provided by other FCU components.

3.3.2 System Topology

3.3.2.1 Hardware Components

The FCU spine is the common medium for communication among

FCU modules. Every module has two spine interfaces, since the

spine may be paired for high-reliability, and is capable of using
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either interface for any function. The bandwidth for messages

through the spine is in the range of 1 to 10 Megabits/second.

Data transfers are normally made between one sender and one

receiver in packets of 1000 bits or less, although a mechanism is

provided for broadcasts from one sender to many receivers.

Because the spine is a shared resource, modules wishing to send

may have to wait or send and retry if receipt is not

acknowledged. The variance of data transfer times can become

quite large if the bus is operated near its maximum bandwidth.

The FCU configuration in Figure 3 illustrates the use of

Assignable Processing Units (APUs) to perform computing tasks on

demand by the team members at their graphic workstations. An APU

is a minicomputer executing approximately one million

instructions per second and possessing upwards of 256 Kilobytes

of local random access memory. The APU has no peripherals of its

own, but reaches through the spine to use disk storage, printers,

communication units, etc. The FCU DOS treats the APUs attached

to the spine as a pool of available processors that may be

assigned to tasks as the need arises. The assignments may be

essentially static, persisting as long as the FCU operates, or

may very brief and last only fractions of a second.

Disk storage in an FCU is supplied by shared file modules.
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A shared file module is a small processor controlling one or more

disk volumes; the processor responds to requests for data reads

and data writes sent to it through the spine. Shared file

modules may incorporate local intelligence for special functions,

for example the automatic staging of files through communication

links to larger data processing systems.

3.3.2.2 Task Assignments

Most computing tasks reside in APUs and use the services of

other modules as necessary. The DOS has some resident code in

every APU, although perhaps just enough to bootstrap additional

code from shared file modules. Since APUs are identical any task

can be run in any AU, and the DOS has full flexibility to

perform dynamic task assignments if it chooses to do so.

Many of the devices we consider as FCU modules have little

intelligence and must be controlled by software in an APU. We

briefly describe two examples of this behavior.

Satellite Image Gathering. A subset of system modules

consisting of an APU, the image correlator, the satellite

communication link, and the static and dynamic database systems

cooperate to discover meaningful events from satellite images.

The APU, using the static database to retrieve geographical

information and stored image templates, commands the satellite
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communication link to obtain an image of a given area. When the

image arrives on the downlink, the APU transfers the image and

template into the image correlator, sets the appropriate

commands, and starts correlation. The APU detects the end of the

correlation, checks the results for significant matches. If the

correlation is negative the APU repeats the entire process after

a suitable delay. If a positive match is found, the APU signals

the Intelligence Officer who may then manually direct the display

of images on a graphics screen along with the correlations and

confidence estimates. The officer may then request direct

control of the satellite imaging, change its frequency, or repeat

correlation with altered parameters. During these steps, the APU

uses the dynamic database to store a temporary (say, 24 hour)

record of all images, in the event that details have passed

unnoticed and the images are needed for later analysis.

Packet to Satellite Relay. Since this FCU has both packet

radio and satellite communication modules, it may serve as a

ground-space relay station. A subsystem composed of an APU, the

packet radio controller, and the satellite communication link

performs this task. Here the two communication modules are

essentially passive components of the FCU, and all data transfer

between them is done under control of a program running in the
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APU. If this application and satellite imaging are running

simultaneously, the issue of shared access to the satellite

communication link must be addressed.

3.3.3 Application Requirements

3.3.3.1 Response Times

Because a wide range of applications can coexist on one FCU

it is difficult to discuss achievable performance in general.

The spine bandwidth does however pose a fundamental limitation on

the number of applications that can be superimposed on one FCU.

In configurations where this limit is approached, critical

applications should try to use local storage and processing power

rather than seeking them through the spine from other modules.

For example, the operator's display station might incorporate

storage for several screen images, that could be updated and

selected for display by short commands from an APU.

3.3.3.2 Data Rates

The data rates present in a particular FCU will depend

strongly on its configuration.

3.3.3.3 Reliability Requirements

When an FCU is configured for high-reliability operation it

will be automatically restartable w L12A.. in the event of

any single failure. A single failure may cause a momentary
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interruption in some or all of the functions performed by the

FCU, and the loss of some recently acquired data. A high-

reliability FCU will automatically detect a failed component,

isolate it from the remainder of the system, and restart in a

well-defined state. Multiple failures can, of course, prevent a

successful restart.

3.3.4 Appraisal

A high-reliability FCU is a restartable system that is

permitted occasional lapses of a few seconds when failures occur.

The majority of the service demand in an FCU is interactive

and arises either from operator commands or external

communication activity. A few tasks may operate in the

background with low priority for such operations as data logging

and diagnostics.

The FCU modules are more tightly coupled than systems

employing long communication lines, but less tightly coupled than

multiprocessors with shared memory.

Priorities for many FCU tasks can be set at configuration

time, because the complete set of functions to be provided by the

FCU are explicit. The priorities may be contingent upon external

factors, for example, the priority of weather information may
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rise during planning for an air strike.
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3.4 Air Traffic Control

3.4.1 Overview

3.4.1.1 General Characteristics

The control of aircraft over a large area is an inherently

distributed problem. The limited range of radar and the number

of aircraft in flight at any moment mean that responsibility must

be distributed among many human controllers at widely dispersed

sites (in the United States, there are about twenty n route

control centers across the country). Close communication is

needed between sites in order to smoothly accommodate the

interchange of aircraft from one control sector to another, and

to plan ahead for possible congestion as planes converge on one

region. Long term planning is possible, since the majority of

routine flights are regularly scheduled and the flight plans are

known weeks in advance.

The primary goal of the system described in this example is

the protection of the occupants of aircraft in flight, during the

period after the tower relinquishes control on takeoff until the

tower regains control immediately prior to landing. The system

is thus an In route air traffic control system, and must contend

with three major threats to aircraft: hazardous weather, mid-air

collision, and in-flight medical and mechanical emergencies. A
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secondary goal of the air traffic control system is the timely

arrival of flights, conserving fuel and speeding the delivery of

passengers and freight.

The example Air Traffic Control System (ATCS) is organized

as a group of Flight Centers (FC's) spread across the country.

An FC is responsible for controlling aircraft in a well-defined

volume of airspace, its Flight Center Territory (FCT). The FCT's

are each connected areas (actually volumes) that together exhaust

the airspace controlled by the ATCS. In a low traffic area away

from major airports an FCT may be large, while in a high traffic

area an FCT may extend only slightly beyond the metropolitan

boundaries. An FCT is further divided into sectors by planar

area and altitude.

An FC is staffed by cgn1rler, the people with immediate

responsibility for coordinating the movement of aircraft.

Controllers are assigned in pairs to workstations consisting of a

large display screen, keyboard, graphical pointing device (a

trackball), low-speed printer, and microphone-earphone headsets

for the controllers. The headsets place controllers in direct

voice communication with aircraft in their sectors and their

counterparts at other FC's. A controller team is responsible for

the control of aircraft in one sector of its FCT.
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A controller usually concentrates attention on the display

screen which provides four basic types of information:

o A static map of the sector controlled by this
workstation. Major landmarks are displayed and labelled
(coastlines, bodies of water, mountain ridges,
airports).

o Symbols representing the aircraft in the sector
(targets), marked with JA indicating the flight number
and velocity of the aircraft.

o Outlines of weather fronts and atmospheric disturbances.

o Blocks of text giving more detailed information on
weather and flight plans.

The tagged targets and weather information are superimposed on

the static map. The precise contents of the display can be

influenced by commands typed at the keyboard, for instance to

enhance or suppress weather information.

A frequent controller command is the handoff performed

whenever an aircraft crosses a sector boundary. The retiring

controller types the handoff command and selects the target with

the trackball. This causes the target to be intensified on the

display of the accepting controller, who then types a

complementary command and selects the target on the edge of his

screen with the trackball. The retiring controller contacts the

aircraft by voice radio and informs the aircraft of the radio

frequency of the accepting controller. The radio operator

contacts the new accepting controller to complete the handoff.

- 40 -



ATCS supports other activities of the controllers by

maintaining the display with accurate position and velocity

information for targets, weather information, and special status

messages. ATCS propagates flight plans along the rcute of the

aircraft in advance of the flight, so that controllers can

familiarize themselves with incoming traffic and to implement a

manual backup system. Several types of hazardous situations are

continuously sought by ATCS (e.g., predicted dangerous proximity

of aircraft, severe weather conditions, aircraft deviating from

flight plans, or a congested volume of airspace) and announced to

one or more controllers when detected. ATCS must also

distinguish and track a number of uncontrolled aircraft in each

sector, aircraft that are not participating in the ATCS control

protocol.

At the administrative level, ATCS provides a means for

dynamically altering the boundaries of a sector or an FCT.

Boundary changes always involve a negotiation between at least

two FC's and must insure that no aircraft participating in ATCS

is without control at any time. Aircraft transferred from one

controller to another as a result of a boundary change must be

transferred by the standard handoff mechanism.
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3.4.1.2 Similarity to Other Systems

The example is modelled upon the National Airspace System

operated by the Federal Aviation Administration, although it

differs in a few important respects. The architecture of ATCS

proposed below is decentralized, while NAS relies on large

computer mainframes at the control centers. It is not possible

to dynamically reconfigure sector boundaries in NAS, nor does NAS

support digitized speech channels on its data transmission lines.

Overall, NAS shows the effects of evolutionary development while

ATCS, a hypothetical system, is specified with fewer constraints

for compatibility and gradual implementation.

The basic properties of ATCS are characteristic of air

traffic control applications designed to handle routine traffic.

The requirements for a military tactical system are somewhat

different ar this examp e is not directly applicable to. that

problem.

3.4.2 System Topology

3.4.2.1 Hardware Components

An FC is illustrated in Figure 4. The workstations are

attached to small Workstation Processors (WP's); WP's are

connected by a star-shaped network to a central hub and thereby

to each other. Two of the nodes attached to the FC are gateways,
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processors that exist to facilitate communications between

clusters. The gateways act as relays, forwarding intercluster

messages along the appropriate lines.

The Workstation Processor is a small computer with local

disk storage, a cluster interface, and special graphics hardware

to drive the workstation display. The graphics hardware assumes

the burden of display refresh so that the general purpose

processing element of the WP may be devoted entirely to other

tasks. A WP is also attached to a Coder/Decoder producing

digitized speech from and translating digitized speech to the

controllers' headsets at the workstation.

The star local network [49 , 55] is chosen to interconnect

workstations because of its reliability properties. No

individual branch of the star is vital to the whole; even if the

cable to one WP is severed the others will be able to

communicate. The hub of the star is a critical component, but

because it is relatively simple the hub can be constructed from

high-reliability logic and a fault-tolerant design. At least two

spare workstations (ordinarily used for training) are attached to

each cluster. The star local network is capable of a maximum

data rate of 10 megabits/second, while the intercluster lines

operate at about 100 kilobits/second.
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Gateways are packet switches for intercluster messages.

Each gateway is connected to two or more gateways in remote

clusters; the two gateways in a cluster connect to at least four

distinct remote clusters.

Radar information enters the system via microwave links or

coaxial cable and is received by special-purpose data reduction

hardwarc attached to the Radar Processor (RP). Two RP's are

connected to each cluster, although only one is normally active

while the other remains in standby mode. The active RP receives

preprocessed image data and merges the information into one

representation of the FCT. The RP utilizes 1As9& known pgsition

reports from the WP's to assist in target resolution, then

supplies the present position for targets in a sector to that

sector's workstation.

Also connected to the hub are at least two Ground-Air-Ground

radio transceivers, which receive digitized speech from WP's and

transmit audio signals to aircraft, and provide the reverse path.

3.4.2.2 Task Assignments

The WP at a workstation supports:

o tracking and tagging the aircraft in the sector
(computing velocity, for instance, from a sequence of
prior positions and velocities);

o updating the workstation display in such a way that all
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tags remain legible irrespective of the relative
positions of aircraft and landmarks;

o receiving, storing, and forwarding the flight plans of
aircraft passing through the sector;

o the handoff protocol and a wide range of other less
frequently requested keyboard commands;

o digitized speech from the Coder through the star local
network, and from the network through the Decoder to a
controller;

low level activities such as sensing the trackball and
keyboard;

o the transmission of target velocity and position
estimates to the active RP;

o protocols to insure the reliable operation of the system
as a whole, e.g., activating the standby RP if the
active RP fails.

Gateways are just packet switches, their responsibility is

limited to the reliable and speedy transmission of intercluster

packets.

The radar processors receive preprocessed radar image data

from their front ends, merge several images and target reports

from WP's, and resolve new target positions which are reported

back to the WP's for display. Because this must be done in real

time the computing burden on the RP is substantial.

The hub is not a programmable computing element but rather

toe switching hardware that binds the local cluster of WP's

Gateways, RP's, and Ground-Air-Ground radio together. Basically
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a passive component, the hub only receives and repeats signals

with extremely high reliability.

3.4.3 Application Requirements

3.4-.3.1 Response Times

The most severe requirement is for real time updating of WP

displays. The positions of all targets must be recomputed and

displayed at least every two seconds (the time between radar

scans). The tag information (flight number, altitude, and

velocity) should should be updated at about the same rate.

The WP must be even more responsive when the trackball is

used to select a target. No visible delay should be present

between the motion of the trackball and the motion of the

crosshairs on the screen. The controller's digitized speech

messages must also be processed without delay.

Messages in a handoff dialogue should be transmitted with a

delay of less than 4 or 5 seconds.

Other routine services can be. performed more slowly. For

example, weather information and flight plans can percolate

through ATCS with propagation times of several minutes.

Reconfiguration will be slower still, taking tens of minutes to

adjust sector assignments and notify the affected controllers.
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3.4.3.2 Data Rates

Because the active RP must receive position and velocity

reports for targets from all sectors every two seconds, and

because the RP generates position updates at the same rate, this

activity represents a major load on the ATCS local network. A

full report on all aircraft in the sector might range from 4K to

40K bits per workstation, for a worst case of 40 kilobits/second/

workstation. Digitized speech between

controllers and aircraft generates significant traffic in

relatively short bursts. A telephone quality speech channel can

be operated at 16 kilobits/second during continuous speech; 20

controllers speaking simultaneously would produce a traffic

volume of 320 kilobits/second.

It is highly desirable to maintain the local network

utilization at a level well below 50%. This is necessary to

reduce the variance on transmission time, for digitized speech

packets especially. The local network bandwidth of 10 megabits/

second (within the capabilities of current local network

technology) will permit at least 20 workstations to be assembled

in one FC before the network utilization rises above 10%.

3.4.3.3 Reliability

Continuous operation is paramount in air traffic control
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where lives are at stake. The example ATCS is designed to make

the probability of a disruptive failure extremely small. The

system would be highly redundant and programmed for fault-

tolerant operation.

In the event of catastrophic failure, manual operation could

be initiated using printed flight plans at each workstation and a

direct video image supplied to the workstations from the radar

eqjipment. Separate cabling could be used to carry direct video

and headsets can be connected to telephons lines, for complete

diversification.

The WP's continuously monitor the status of their colleagues

and the RP's. If a WP fails, one of the standby WP's will be

converted to active status, loaded with the data pertinent to the

sector of the failed WP, and started. A similar procedure is

followed if the active RP fails, but an RP's state information is

more volatile and need not be replaced before starting. When the

RP is switched in, all of the WP's must be notified of the

change.

3.4.4 Appraisal

The ATCS is a survivable system requiring a large investment

in redundant equipment and fault-tolerant hardware. Redundancy
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must be present in all of the related subsystems including radar,

radio, telephones, and power supplies.

The system is fully interactive with no substantial batch

processing components.

The WP's and RP's within a cluster are tightly coupled

physically and logically. They are connected by a high bandwidth

local bus and utilize a large fraction of the available bandwidth

continuously. Intercluster coupling is less tight, and could be

accommodated by slow lines if the digitized speech channels were

replaced by external telephone lines.

The WP's operate independently and with equal priorities for

access to the local network. Wherever possible, priority is

given to digitized speech packets because of their real-time

nature, both with regard to tasking priority within the WP's and

Gateways, and for access priority to the local network. The

messages exchanged between the RP and the WP's can be time

multiplexed to avoid collisions.
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3.5 A Military Message System

3.5.1 Overview

3.5.1.1 General Characteristics

A military command center could be served by the military

Message System (MS) developed in this example. The message

system connects many command centers and facilitates both inter-

and intra-center message traffic. The system helps the command

center staff compose, send, read, and file messages in a way that

meshes smoothly with normal routine. Archival copies of messages

sent and received are made automatically, and a database

management component retrieves old messages from the archives.

The users are divided into Directorate each commanded by a

Director, who is assisted by a Deputy Director. Incoming

messages arrive at the message system node (MSN), are briefly

reviewed by the communication center staff, and then forwarded to

the correct Directorate. (Because messages often arrive without

a specific address and must be delivered on the basis of subject

matter, this distribution step cannot be fully automated.) The

Deputy Director of the Directorate receiving the message is then

responsible for further distribution to staff members or the

Director. As messages pass through the communications center

they are assigned a unique message-ID and copied into the

- 51 -

.18



archives. Outgoing messages are stamped with a unique ID and

archived when they are sent, but need not be reviewed.

Messages are marked with priority level (one of Flash,

Immediate, Situation, Routine) and security level (one of

EyesOnly, Secret, Unrestricted). The procedures followed when

messages are sent and received depend on the priority and

security levels. For example, the arrival of a Flash message

will cause immediate notification regardless of work in progress

by the recipient. If the recipient fails to acknowledge receipt

promptly the message will be forwarded to another party (if it is

not EyesOnly) until responsibility for the message is accepted.

EyesOnly messages are never revealed to anyone except the

addressee (they are addressed to individuals, rather than roles)

and are never archived.

3.5.1.2 Similarity to Other Systems

This example is based loosely on a study of CINCPAC done by

Mitre Corporation (19]. The message handling procedures

described in that report were largely manual. The Military

Message Experiment (MME) (62] was a subsequent effort to test

automated message handling at CINCPAC.

The MME may also be viewed as an outgrowth of the numerous

message systems developed on the ARPANET. A representative of
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these is the Hermes message system [42].

3.5.2 System Topology

3.5.2.1 Hardware Components

A single node of MS such as the one installed at the

military command center consists of four computers, depicted in

Figure 5. Two of the computers are relatively small and simple

terminal concentrators. Every terminal at the node is attached

to one of the concentrators. If a concentrator fails, half of

the terminals will be cut off. Concentrators are small and

simple enough to be built with high-reliability architectures,

and spares can be held in reserve. Thus even though the

consequences of a concentrator failure are severe, it is expected

to occur very infrequently and can be easily repaired.

The concentrators are connected to two larger server

machines. Each concentrator is connected to both machines and

either server is capable of sustaining the full computing load of

MS at the command center. A failure of the left or right server

will cause the other machine to automatically assume the

computing tasks of all online users, with no loss of input data

and perhaps only a slight pause (less than 5 seconds) in

response.

- 53 -

-, ... = , " ... ... . I



Terminals

Terminal TerminalCo.. ntor Conctrator

Comm.R
Lino LeftRight Comm.

Server Server Line

Corle Controlle

Disk Volumes Disc Volumes

Figure 5. A Hessage System Node

- 5 4 -

L.-



The servers cooperate to insure fully redundant storage of

all data in the system, via replicated disk controllers and disk

volumes. The failure of one disk volume will cause all queries

and updates to be directed to its dual until the failed unit is

repaired or replaced. A newly introduced volume will be brought

online and made up-to-date by copying information to it from its

dual.

Communication lines to other MSNs are split between the left

and right servers so that failure of one server will not isolate

the MSN from the network. Each server should be connected to two

distinct MSN systems to reduce vulnerability to communication line

failures. The communication lines can transfer data at 250

Kilobaud through a Direct Memory Access (DMA) interface to the

left or right server's memory. The servers act as packet

switches, breaking down long messages into packets of 4000 bits

or less. A MSN may introduce new packets into the network,

extract packets addressed to it, or forward packets addressed to

other MSNs.

3.5.2.2 Task Assignments

An MSN furnishes services to local users and acts as a

packet switch for through traffic. The left and right servers

must be able to assume all of the processing tasks of the node if
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necessary.

Most of the system computing capacity will be devoted to two

tasks: interrupt-driven packet switching, and the communication

between servers needed to insure survivable operation. The

concentrators can be depended upon to preserve a small amount of

the recent communication history between servers and terminals,

which can be used by the surviving server in the event of failure

to resume the dialogue properly.

3.5.3 Application Requirements

3.5.3.1 Response Times

Because all access to the system is interactive it is

desirable for all response times to be as small as practical.

Priorities for tasks can be established, though, based on four

classes of user expectations:

1. Coordinated hand-eye movements. In situations requiring
coordinated hand-eye movements, response times should
be shorter than the minimum human hand-eye response
time (about 0.2 seconds). For example, the delay
between pressing a cursor positioning key and movement
of the cursor on the screen is in this class.

2. Immediate actions. Actions perceived by the user as
being "local" or "personal" should occur very quickly,
ordinarily with delays of 2 seconds or less. For
example, "turning a page" or viewing the next screenful
of text in a message is an example in this class.

3. Significant computation. If the user initiates a
"significant computation," that is, a task he
understands will accomplish a substantial search or
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reorganization of information, he may be prepared to
wait many seconds before proceeding. Examples in this
class include text formatting and complex database
queries.

4. Remote Actions. If the user perceives a comw. nd as
having effects at a distance he may accept aelays of
minutes to hours for a response. Message transmitted
to remote MS users are the principal example of this
class, and network status inquiries might be another.

Response requirements may also be strongly affected by two

external factors, message priorities and hardware interrupt

processing deadlines. Some hardware devices will impose

scheduling deadlines for associated server tasks; DMA

communication interrupts are probably the most important instance

of this. Interrupts must be processed and the DMA interface

reset to avoid the loss of the next incoming packet.

3.5.3.2 Data Rates

When both processors are functioning, an MS node should be

capable of a packet switching throughput approaching the data

rate of its communication lines, assuming half are transmitting

at the maximum rate and the others are receiving the forwarded

packets.

If simple text-only display terminals are used, data rates

for terminal I/O can be estimated from these requirements, a

knowledge of the user interface, and statistical information on

the frequency with which operators invoke various commands.
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We assume that a typical MSN is constructed around servers

with approximately the computing power of the PDP 11/70, and can

support about 16 users.

3.5.3.3 Reliability Requirements

The failure of any single processing or storage element

(server, terminal concentrator, disk controller, or disk volume)

should not disable the system or disconnect it from other nodes.

The failure of a terminal concentrator will disrupt communication

with about half of the terminals, but should not affect the

remainder. A failure in any component except the concentrators

should not interrupt service to users in jAy. way except for the

slight delay during which the system reconfigures itself. No

input typed by the user should be lost if a server, disk

controller, or disk volume fails.

To minimize the time during which a node is vulnerable to a

single failure (i.e., after it has already experienced a single

failure) the surviving components should attempt to isolate the

failure and notify a system operator. When repairs or

replacements ha-a been made, the system should automatically

reincorporate the element to reach a survivable operating mode

within a few minutes.
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3.5.4 Appraisal

On the spectrum of reliability, MS is a survivable system

with severe reliability requirements. Such requests force fully

redundant storage and processing components to be included in the

MSN, and substantial computing resources to be devoted to

checkpointing, survivable protocols, and database

synchronization.

MS is primarily an interactive system. A node may perform

some services in the background, such as file archiving and mail

delivery to users not logged in, but most of the system resources

will be consumed by on-demand activities.

Mail systems are inherently oriented towards loosely-coupled

communication lines. Delays of a few minutes for message

transmission are usually not significant, and a priority

structure in the application provides a means for achieving short

transmission times when needed.

The resource management within MS can be organized on a

fixed, priority basis. The roles of system users are known in

advance, and resources can be allocated in accord with these

constraints. When priority is not critical, users can be served

in an approximation to processor-sharing to reduce the average
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4. RELIABILITY MECHANISMS AND THEIR APPLICATION TO DISTRIBUTED
SYSTEMS

4.1 Introduction

One key attribute of any usable computer system (or, for

that matter, any other type of system) is the ability to rely on

the system to correctly execute a set of commands given to it.

Systems that are unreliable tend not to be used because they

cause more work than they save. In Phase I of the DOS Design

Study, we have investigated several different topics relating to

reliability mechanisms for distributed computer systems:

1. Application Requirements: What are the requirements of
actual applications? We have identified the demands
several different classes of applications place on
mechanisms to insure reliable operation. For example,
some applications in life-controlling situations
require absolute, uninterrupted service for long
periods of time. Others, such as inventory control,
also require reliable operation, but can tolerate
periods of outage and backups to previous consistent
states of system operation. Requirements of
applications have been developed in Chapter 3.

2. Generic Reliability Mechanisms: Many different
mechanisms for providing reliable operation have been
developed. Groups of these approaches are really
slightly different variations on one generic idea. An
example of such a generic mechanism is the
checkpoint/restart mechanism: many different
variations and uses of checkpointing and restoring
consistent system states have been developed.

3. Specific Uni-Processor, Multi-Processor and Distributed
Processor Reliability Mechanisms: Advantage is taken
of the relationships between the components of a system
in the design of reliability mechanisms. Relationships
that are exploited includc: the physical proximity of
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system components (e.g. processors and memories), the
presence of inexpensive, redundant resources, and the
ability halt concurrent activity while a consistent
state is established.

4. New Capabilities and Requirements of Distributed
Systems: Distributed systems represent both an
opportunity and a challenge for providing reliable
operation. The opportunity comes in the form of
autonomous operation of the independent components that
make up the distributed system. The challenge arises
because of the difficulty of coordinating the operation
of each of the autonomous components.

In this Chapter, the results of the reliability section of

the Study are presented. In the next section, the nature of the

mechanisms we investigated is described. Section 4.3 defines the

terms associated with reliability mechanisms used in this

Chapter. Next, the general reliability requirements of

application programs and the corresponding goals of the

mechanisms studied are presented. In Section 4.5 a survey of

current techniques for providing reliable operation in computer

systems is presented. The next section describes several

different systems in which a number of different distinct

reliability measures have been integrated together into a unified

system. The final two sections address the new reliability

requir-ements and capabilities of distributed systems and areas

that need further study.

In addition, the discussion of reliability draws on the
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capabilities motivated by Chapter 2 and the reguirements

motivated by Chapter 3. The results of this Chapter will be used

in Phase II of this study in the development of desired features

of both a Constituent Operating System and a Distributed

Operating System.
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4.2 Focus of Study

The primary focus in this part of the study has been on

reliability mechanisms that are applicable to distributed

systems. Certain mechanisms, while interesting in general, will

not be successful in an environment where communication between

the parts is significantly slower then the access time of one

part to its local data. There is limited interest in mechanisms

that either require close synchronization between components or

large amounts of data to be transferred between components. In

addition, we have emphasized mechanisms that work at the highest

levels of system abstractions to the exclusion of very low level

mechanisms. As an example, we have avoided studying reliability

mechanisms such as parity checking and data consistency across

subroutine calling boundaries in favor of larger granularity

mechanisms such as atomic transactions (a form of short lived

process) and multiple component interactions.

Finally, we have explored in greatest detail mechanisms that

fit traditional models of computing. The main reason for this

perspective is that to a great extent, existing systems and

applications utilizing the models suggested by existing systems

will be used as building blocks for future distributed systems.
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4.3 Definitions

In the literature discussing reliability, there are many

different interpretations given to several commonly used terms.

Additionally, the meaning of the reliability of a system is often

confusing or unstated. To avoid similar problems in this report,

we present a set of definitions of terms (drawn largely

from [48)) and also characterize what we mean by the reliability

of a system.

4.3.1 Terms

The _elia JJ. of a s must be stated in terms of

several different interactions:

o System: A system is a set of components acting together
to perform a service. The components may be viewed at
one time as atomic objects and at another, as systems
themselves. The interaction between the components is
the algorithm of the system.

" Reliability: The reliability of a system is the total
measure of success of the system carrying out its
specified service. This measure is taken after all the
reliability mechanisms of the algorithm have been
exercised.

o Fault: A fault is the physical or logical incident that
causes the algorithm of a system to take an incorrect
path, make an incorrect decision or store an incorrect
value of data. A fault is the incorrect event while an
error (see below) is the effect of that event.

o Error: An error is the effect of a fault on the data
bases or interactions between components of a system.
It is proper to speak of both fault repair and error
correction; the former is the act of eliminating the
source of faults while the latter involves eliminating
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the effect of a fault on the state of a system. We are
concerned with errors and error correction when we
attempt to restore the state of a data base to a
previously known correct state. When we reconfigure the
components used to make up a system, we are aware of
faults and performing fault repair.

o Error detection: Three classical aspects of reliability
mechanisms are error detection, error isolation and
error recovery. Error detection refers to activities
aimed at discovering the introduction of errors into the
state of a system. The various techniques used include
explicit checks of the consistency of results, error
correcting codes, and timeouts.

o Error isolation: Error isolation refers to efforts at
keeping the impact of errors isolated from parts of the
system state known to be correct. Error isolation is
usually an activity that requires planning ahead to make
sure that partially developed, unverified results are
kept separate from the main system state. An example of
an error isolation mechanism is an intentions lists (see
Section 4.5.4.5).

o Error recovery: Error recovery refers to those actions
aimed at removing errors from the state of a system.
The extent to which error isolation has been effective
influences the difficulty and effectiveness of error
recovery operations. Some error recovery techniques
will establish a system state which is equivalent to the
state that would have been in effect if the error had
not been introduced by a fault. Others will only be
able to set the system to a legal or consistent state --
one from which further system operation may proceed.

o Error tolerant system: An error tolerant system is one
which makes use of error detection, isolation and
recovery mechanisms to compensate for the effect of a
fault introducing an error into the state of a system.

o Fault tolerant system: A fault tolerant system is one
which is capable of being reconfigured so that the
source of a fault is eliminated. Error tolerant systems
are not necessarily fault tolerant and vice versa.
However, if a reliable system (see below) is to avoid
repeatedly spending resources on recoverying from
errors, then it must be both fault tolerant and error
tolerant.
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o Reliable System: A reliable system incorporates both
error tolerant and fault tolerant mechanisms to achieve,
with high probability, the stated service of a system.
Note that the reliability of a system is a probabilistic
measure. Error and fault tolerant mechanisms can only
reduce the probability that a system will fail, never
completely eliminate the possibility of failure.

4.3.2 The Purpose of Reliability Mecbanisms

With these defined terms as background, the purpose of

reliability mechanisms is to keep a system performing the service

it is supposed to provide in the presence of faults and the

errors that faults induce in a system. There are many different

techniques used as reliability mechanisms and the success which

these mechanisms achieve also varies widely. Some very simple,

inexpensive techniques may yield a high probability of success.

Going the rest of the distance, achieving even higher

probabilities of correct operation, can be costly and complex.
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4.4 General Requirements and Capabilities of Reliability
Mechanisms in Distributed Systems

As discussed in Chapter 3, different applications have

varying reliability requirements and make different demands on

the reliability mechanisms of an operating system. Likewise,

different techniques for providing reliable operation have

varying strengths and weaknesses, costs and complexities. In

this section we characterize both the requirements of

applications and the capabilities of various reliability

mechanisms. First, however, one qualifying observation on the

probabilistic success of any re.iability mechanism.

4.4.1 Probabilistic Success of Operation

There is no such thing as a completely reliable sy3tem.

Whenever there is a source of data there is always the

possibility, however small, of a fault occurring which will

introduce an error into a data base. When that fault occurs in

the very mechanism that was supposed to compensate for the effect

of faults, then the system will fail. This does not mean that it

is impossible to developing reliable systems. Rather, the

reliability of a system must be stated probabilistically -- e.g.

a system will perform its service correctly with probability

0.993
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In their paper on crash recovery in a distributed file

system, Lampson and Sturgis [321 present a strategy for

recovering from failures of components of a file system (e.g.,

disks, processors and communication links). They point out that

the correctness of any algorithm is based on a formal model of

the behavior of the devices used by the algorithm. Since there

is no way of proving that the model and the physical device are

identical, the best that can be done is to say that the physical

device and the model are identical with probability (1-P) and

that P is small enough. The value of P can only be determined by

actual experience with the devices.

Lampson and Sturgis further characterize the probability of

their mechanisms failing by dividing the events that occur in the

formal model of devices into two categories: desired and

undesired events (or, in our terminology, faults). In a

fault-free system, only desired events will occur. They further

divide undesired events into two categories: expected and

unexpected. Error recovery mechanisms are prepared to deal with

a bounded number of expected, undesired events and no unexpected,

undesired events. The probability P is just the probability that

an unexpected, undesired event occurs. While designers of

reliability mechanisms attempt to account for all undesired
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events, there is always a possibility that an unexpected,

undesired event will occur. Careful thought and experience with

the nature of undesired events of a given device can, however,

yield an acceptable probability of reliable operation. Similar

results and analysis are reported in the context of the Tandem

Gurda Operating System [2].

4.4.2 Application Requirements and Mechanism Capabilities

There are two general requirements of distributed

applications: maintaining the consistency of the state of a

system and continuing the operation of a system, both in the

presence of faults. Maintaining consistency refers to preserving

the integrity of the data bases that define the state of a

system. Without such consistency, programs that rely on the data

base cannot make sense out of its contents. Continuing -U&

o of a system involves seeking alternative means of

accomplishing a service when a component of the system is no

longer performing its service. Different applications have

varying needs for continued operation ranging from completely

continuous, fully functional operation to severely degraded, but

partially functional, operation.

An application program whose data bases are kept consistent

may still experience the effect of faults. Thus, there is need
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for both data base consistency preservation mechanisms and

mechanisms for insuring the continued operation of an

application. Of the two, an application's requirement on

consistency maintenance has priority over its requirement for

continued operation. This is because there can be no hope of

invoking recovery mechanisms if the foundation of the system is

uninterpretable.

With these general application reouirements as background,

the caabilities of reliability mechanisms can be described in a

similar manner in terms of consistency maintenance and continued

operation of a system. Such general capabilities are valid for

both centralized and distributed systems. While it is rare that

one reliability mechanism can be classified as being motivated by

just one goal, examples of mechanisms which are largely inspired

by consistency maintenance or service continuation do exist.

The essential goal of consistency maintenance is the

integrity of stored data. This can take several forms:

o State Consistency: Logically correct states of a system
are not made incorrect due to faults. The goal of some
reliability mechanisms is to insure that the correct
logic of a program is not made incorrect by being
interrupted, interfered with or partially or incorrectly
completed.

Application Requirement Example: One of the most
elementary requirements of almost all applications is
that the data bases of the application be kept
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consistent so that the programs of the application can
continue to operate.

Mechanism Capability Example: An atomic update 2 is a
modification to a data base that cannot be divided into
multiple fault sensitive parts. An atomic update either
succeeds entirely or fails completely -- completely in
the sense that the data base state is the same as it was
before the atomic update was started. There is no
in-between state established where part of an update is
applied and part is not.

o Permanence of Operations: If a program performs an
operation, then the effect of the operation (updates to
the data bases of the system) is permanent. It is
desirable to say that after a given point, a given
update to a data base will be insulated from the effects
of faults.

Application Requirement Example: A predominant mode of
using computer systems is to record information.
Airline reservation systems, warehouse inventory control
systems, electronic message systems all rely on computer
systems to take in information and to not loose that
information.

Mechanism Capability Example: A common version of this
type of reliability m,}chanism involves moving a piece of
a system's state from volatile to non-volatile storage.
The act of such a transfer is to lower the probability
that a fault will cause the data to be lost. This is
useful, for example in the programming of a server
application program which accepts request, immediately
delivers an acknowledgement for a request and eventually
delivers the response to a request. Before the request
is acknowledged, a record of that request must be moved
to non-volatile storage so that it will not be forgotten

2Atomic updates are used for several different purposes besides
achieving reliable operation. Another goal is to use them in
conjunction with atomic transactions as a means of enforcing
exclusive access to a data base by one of several competing
processes.
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due to a fault in the processor or volatile memory.

The second major capability or goal of reliability

mechanisms is aiding in the continued operation of a system.

Several different types of mechanisms fall into this category,

including exception handling, persistence mechanisms, alternative

sources of service and reconfiguration strategies. Four general

categories can be described:

o High Availability: The goal of mechanisms for achieving
high availability is to help provide a service that is
available with probability Q, where Q is close to 1 and
in any case to limit the duration of outage to some
period of time delta t, where delta t is determined by
the characteristics of the application.

Application Requirement Example, Every system has some
need for availability, so the magnitude of Q and the
value of delta t determines the degree of high
availability required by an application. For example, a
life support application might require the utmost in
high availability with a very high Q and a very short
delta t, while an electronic telephone switching system
would require high availability, but with much less
urgency.

Mechanism Capability Example: Most applications that
require very high availability make use of duplicate
processor and memory resources that are able to pick up
the computing of the application in the event of a
failure. Systems such as #1 ESS [67] and the Tandem
G Operating System [2] utilize redundant
processors, memory and devices that keep track of all
system data bases so that in th e-?nt of a fault, the
failed component can be droppeo ;he computation
proceed with the back-up compon.i, Quite often
techniques for providing high availl..lity are
specialized for the application in question, taking
advantage of well understood characteristics and
requirements of the application. Some very critical
tasks of an application could have redundant resources
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allocated to them, while other, less critical tasks
would not need to be supported as effectively.

0 Fail Soft: Fail soft'operation admits the possibility
that the occurrence of a fault will change the
characteristics of an application program. Changes can
be in both degraded performance and degraded
functionality. The important feature, however, is that
a fault does not cause all application tasks (including
unfailed components) to cease operation. The errors
caused by faults must be isolated so that their presence
does not cause other correctly operating components to
fail also. In addition, applications that must exhibit
fail soft behavior must be structured so that no single
component is critical to the overall operation of the
application.

Application Requirement Example: Almost any application
which is routinely used to support critical activities
has a requirement for fail soft behavior. In a data
base management application, the inability to access
part of a distributed data base, should not preclude
satisfying queries that do not involve the unavailable
portion. For a status monitoring application, the
failure to receive information over a communication path
about one monitored event should not impact the
monitoring of other events. In addition, alternative
means of determining the status of the event could be
used to compensate for the failed path.

Mechanism Capability Example: In the ARPANet, the
algorithms used to route messages between the message
switching nodes (IMPs) are designed to compensate for
failed nodes. In event that a node along the path of a
message fails, the dynamic routing algorithm chooses an
alternative path that will bypass the failed node.
While this results in somewhat degraded service, the
network still manages to get messages from one point to
another.

o Recovery of Partial Results: In an application which
involves expensive calculations, there is a great desire
to avoid recomputing such calculations in the event of a
fault. This is not so much motivated by the criticality
of the computation, but rather by the sheer size of the
task.

Application Requirement Example: A computation which
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runs on a computer system for an extended period of time
(say, one hour or more) requires some form of partial
results recovery mechanism. An example of such a
program is a weather forecasting calculation: there are
large amounts of computing to be done to perform the
algorithms of weather forecasting and in addition, there
is no time to re-run the entire calculation before the
next period of weather forecasting occurs.

Mechanism Capability Example: Checkpoint/Restart
mechanisms are the most familiar versions of this form
of reliability mechanism. The basic idea is to store
the state of a long, expensive computation at several
intermediate points (checkpoints) of the computation so
that the occurrence of a fault will require
recomputation only from the most recent checkpoint, not
from the beginning of the entire computation.

o Task Completion: In some situations, there is a desire
to complete a task regardless of the method or time used
to accomplish this. The fact that the task was not
completed as soon as possible is not as important as the
ultimate success in completing the task.

Application Requirement Example: The electronic mail
system of the ARPANET illustrates this requirement well.
Between the time a message is composed and the time it
is delivered to its recipient, many different types of
faults can occur: the sending or receiving host can
crash, one of the nodes in the the communications
network can stop working and messages can get lost. The
only requirement is that the message get from the sender
to the recipient.

Mechanism Capability Example: A set of techniques
collected under the term Persistenc can be used to
achieve ultimate completion of a task. One such
technique is the following general framework to be used
in application programs:

1. Attempt a task.

2. Wait for a positive response indicating the
completion of the task.

3. If a positive response is not received after a
period of time, abort the operation, remember the
need to perform the task and try again after a
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waiting period of time.

This is a very simple technique and will only handle
certain types of reasons for not completing tasks.
However, in many cases (as in the ARPANet electronic
mail example) this approach is satisfactory.

In addition to the above capabilities of centralized or

distributed reliability mechanisms there are several attributes

unique to distributed systems which enable additional techniques

for reliability mechanisms to be used. Implicit in many of the

classes of mechanisms stated above is the assumption that some

parts of a system may fail and others will still operate

correctly. For centralized systems (e.g., an application program

written to operate on a single host computer system), this is a

questionable assumption: usually, the system runs or it doesn't

-- there are no intermediate states. With distributed systems,

there can be true autonomy. When separate hosts are physically

separated, the failure of one machine does not impact the

operation of another. One of the impacts of a distributed

architecture on potential reliability mechanisms is that the

effectiveness of mechanisms is enhanced by the true autonomy of

the multiple components that make up a distributed system.

Another characteristic of a distributed architecture, the

greater emphasis on decoupled systems, also enhances the

potential for reliable operation of application programs.
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Implicit in most of the types of mechanisms discussed above is

the separation of an application into multiple parts. This is

primarily to achieve multiple autonomous parts in an application

and also multiple parts which may be flexibly connected together

to create one application. With centralized systems, it is

difficult to avoid building couplings that take advantage of the

central machine upon which the application runs. These couplings

tend to be rigid and difficult to break and reestablish in a

different configuration.

The result of a distributed architecture is to make many of

the techniques that have been suggested for building reliable

systems on centralized systems much more believable. In

addition, new techniques that take advantage of the true autonomy

of the components of a distributed system can be developed.
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4.5 State of Current Technologies for Providing Reliable
Operation

4.5.1 Introduction

The subject of reliability and mechanisms to achieve

reliable systems is given excellent treatment in published

literature. In the course of the study, we discovered three,

rather different, types of contributions:

o General Approaches, Frameworks and Surveys: Several
excellent survey papers exist that describe general
views of the field of reliability, the nature of faults,
and mechanisms for dealing with the effect of faults on
the operation of a system. Anderson, Lee and
Shrivastava [1], and Verhofstad [69] have each written
survey articles which are good reviews of the various
terms and techniques that have been used in general
purpose operating systems and data management systems,
respectively.

o Isolated Proposals for Specific Mechanisms: The second
type of contribution are specific mechanisms for
attacking specific problems in computing systems. Many
different mechanisms have been proposed and there is
much overlap between many of the proposals. Lomet's
original work on atomic actions [36], Montgomery's
proposal for using multi-valued objects to implement
atomic actions [41), Lampson and Sturgis's proposal for
using atomic actions in a crash recovery mechanism 132]
all address the issue of atomic actions, but each
addresses a different aspect of the mechanism and use it
in slightly incompatible circumstances to solve
different problems. Such proposals of isolated
mechanisms have traditionally been the basis for
development of integrated approaches to reliability:
the integrated approaches typically build around one or
two isolated mechanisms.

o Integrated Systems: Several different groups have
worked at providing reliability mechanisms.-in the
framework of a general purpose operating system. Two
such systems, the IBM System R [35] and the Tandem
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GraOperating System [2] have integrated different
sets of reliability mechanisms together with other
operating system mechanisms to form an integrated
operating system that provides a level of support for
reliable transactions. Developing integrated systems is
by far the hardest activity in the area of developing
reliability mechanisms and this observation explains the
sparsity of examples of integrated systems.

Much attention is given in the literature to the reliability

problems and requirements of data base management systems. Two

reasons are apparent for this emphasis: First, the basic

importance of data capture and retrieval dictate that schemes for

providing reliable operation be developed. Second, the nature of

data base query and update activity is constrained enough so that

the problems can be described and the nature of the interactions

between components can be well understood. In some cases,

solutions to specific data management problems can be generalized

to apply to general operating system mechanisms.

4.5.2 Generic Approaches to Error Recovery

When a fault occurs, the impact on a system is to introduce

an error into one or more of the data bases or state of the

system. The purpose of error recovery is to eliminate the error

from the system state. There are two generic approaches for

performing error recovery: restoring the state of the system to

a previously established (presumably correct) state, called

backward error recovery and establishing a new state of the
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system derived from (the correct portion of) the system state

containing the error, called forward error recovery [1].

In backward error recovery (see Figure 6), when a fault

occurs, the state of the system is reset to a previously

established recovery 20iJJ. Recovery points may take two forms:

an initial value for the state of a system 3 , or a value for the

system state which was previously saved by some form of

checkpoint operation. In terms of the figure, the horizontal

line indicates system progress, the vertical bars are previous

values of the state of the system, the asterisk indicates the

occurrence of a fault. Implicit in the backward error recovery

strategy is the assumption that subsequent progress after the

recovery action has occurred will either avoid the same error

(i.e., the error was transient) or that the path taken after the

recovery will be different from the path that encountered the

fault, and thus avoid the same fault. For the latter case to be

true, the fault must be removed and this implies that a backward

error recovery strategy must be coupled with a reconfiguration

strateaX to eliminate the source of faults.

31n which case backward error recovery is just a system reset.
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A. Backward Error Recovery

I -O

B& Forward Error Recovery

Figure 6. Backward vs. Forward Error Recovery
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As the operation of a system progresses, checkpoints must be

taken at intervals determined by the probability of a fault

occurring, the cost of recomputing from a recovery point and the

cost of storing intermediate system state. The decision to

discard a recovery point is influenced by whether or not a fault

will create a need for restoring the system state to that point.

This is a major issue in distributed systems where an application

may have several points of activity (e.g. requests to servers)

outstanding at any one one instant.

In forward error recovery strategies, the application

program takes a very active role in preparing for error recovery

and in performing the actual transformations that correct an

erroneous data base. Figure 6 illustrates the scheme of forward

error recovery. A computation proceeds as the horizontal line

until a fault (asterisk) occurs. At that point, a recovery

action (vertical path) must occur which eliminates the effect of

the fault and allows the computation to proceed, as if the fault

had not occurred.

It is difficult to say anything in general about the

recovery actions that occur in forward error recovery because

they are highly tuned to the application in question. The term

excetpion handling has been used to refer to the set of actions
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that occur when an error is detected in a forward error recovery

scheme4 . Exception handling is fairly well understood and a

number of useful programming language abstractions have been

developed £18], including one for the emerging DoD standard

language Ada [27].

The main difference between backward and forward error

recovery strategies is the amount of knowledge of the application

program incorporated into the recovery strategy. With backward

error recovery, the details of the application program are not

important: the implementor of the application makes use of

general purpose mechanisms for saving a recovery point,

reconfiguring the application to eliminate the source of faults

and causing the state of the application to be restored to a

previously established recovery point. For forward error

recovery strategies, much more of the mechanism to correct an

erroneous data base has to be created anew for each application.

In terms of usefulness, powerful backward error recovery

4The reason the term exception handling has been associated
with forward error recovery is that the scheme of going forward
rather than backing up involves more explicit programming, and
exception handling has been in the sphere of programming
languages.
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mechanisms have not been sufficiently developed so that forward

error recovery strategies are not needed. While there is much

ongoing work aimed at developing general purpose backward error

recovery strategies and such strategies are more promising than

forward error recovery schemes, it is still true that many

existing instances of reliable application programs utilize

forward error recovery strategies. Such applications are usually

quite important, relatively simple and the reliability

requirements are well defined. An example of one such

application is the file system of an operating system.

Preserving the integrity of the file system data structure is

quite important and the nature of the data structure is

relatively simple. With centralized hosts, the data structure of

most file systems is a single centralized data base whose

correctness is easily determined. Forward error recovery

strategies are used extensively to recover the a data structure

of a file system malformed due to errors introduced by a

fault [60).

Finally, backward and forward error recovery strategies are

not incompatible: it is possible to utilize both strategies in

the same application in a complementary fashion [1]. In those

cases where errors are simple and anticipated, forward error
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recovery schemes can be used. Backward error recovery strategies

can be used in more complex cases where a fault has been

unanticipated or to recover from a failing forward error recovery

scheme. In fact, some schemes, such as the one proposed by

Takagi [63], use both forward and backward error recovery

strategies in the same general purpose error recovery mechanism.

In subsequent descriptions of specific mechanisms, the ideas

behind forward and backward error recovery should be understood.

The utility of proposed mechanisms can be judged based on the

general utility of generic forward and backward error recovery

schemes.

4.5.3 Generic Techniques Used in Specific Reliability Mechanisms

4.5.3.1 Introduction

In the course of the study, we looked at over 20 different

reliability mechanisms -- specific schemes to aid in the reliable

operation of application programs. There is a large degree or

overlap as suggested by Figure 7. This Figure was derived from a

diagram used in a talk by Saltzer in which he commented that a

number of different mechanisms in operating systems were making

use of several key ideas [56]. While each mechanism made a

slightly different contribution to solving various operating

system problems, there was a recurring set of general techniques
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Figure 7. Recurring Use of General Techniques in Reliability

Mechanisms
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used in many of these contributions. In this section we will

analyze some of the recurring or generic techniques used in the

many different reliability mechanisms analyzed in this study.

4.5.3.2 Redundancy: Data and Control

Redundancy is at the heart of most reliability mechanisms.

The reason for this is dictated by the effect caused by faults:

a fault ultimately causes a loss of information or capability

that is critical to the completion of a task. To make up for

that loss, some form of redundant information or action must be

utilized or invoked. Redundancy is most frequently viewed as a

technique used to cover for losses of data, however redundant

points of control are also frequently useful. An example of the

use of redundant data is a distributed, replicated data

base [64]. If a site holding one copy of the data base is

unavailable for accepting queries or updates to the data base, an

alternative site holding a redundant copy of the data base may be

accessed. An example of the use of redundant points of control

is the store and forward algorithms used by the ARPANet

IMPs [201. When a packet is sent by a sending IMP to a receiving

IMP, knowledge of the packet is not discarded by the sending IMP

until an acknowledgement is received. This knowledge represents

a redundant point of control. If such an acknowledgement is not

received before a timeout occurs, then an alternative receiving
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IMP is selected and the packet is sent to the alternative.

Many different forms of redundancy are used in practice:

duplicates, checksum codes, backup copies, and checkpoints are

several techniques that are based on storing redundant

information.

4.5.3.3 Atomicity

Atomicity is a technique that is being used increasingly in

operating system mechanisms. Atomic operations are actions that

occur as a complete unit. The undivided nature of atomic

operations has several aspects:

o The atomic operation will either occur completely, or
will not occur at all. In particular, this must be true
when an error occurs in the middle of an atomic action 5 .
It is this aspect of the meaning of atomic action that
is especially relevant to reliability mechanisms.

o No other system activity will interfere with an atomic
operation's use of resources. This aspect of the
meaning is particularly relevant to mechanisms for
controlling concurrent sharing of resources in a system
by multiple processes.

o The desired operations of an application program are
programmed in terms of multiple sequential (or parallel)
atomic actions.

5Talking about the middle of an atomic action is somewhat
contradictory, however we assume that as with atoms in physics,
our atomic actions are really composed of smaller parts that are
packaged together into one atomic action.
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From the standpoint of reliability mechanisms, atomic

operations yield two desirable qualities: predictability of the

effect of operations and bounding the period of time during which

a fault can cause problems for an application program.

Predictability in the face of failures is desirable because the

extent of the error recovery operation is well defined. If a

failure occurs and an operation is partially completed, partially

changed data bases must be restored to their previous values.

This can be a difficult task. Atomic operations are usually

coupled with a mechanism for storing results in non-volatile

storage. Thus when an atomic action completes, its effect is

also made permanent. Such atomic operations limit the time

during which a fault can cause a disruption. Once an atomic

action has finished, the vulnerable period is over. This

property of limiting the period of vulnerability to faults

contributes to efforts aimed at putting lower bounds on overall

system reliability.

4.5.3.4 Isolation of Partial Results

A number of different mechanisms attempt to keep

intermediate or partial results separate from permanent data

bases. The benefit of this strategy is that if, for some reason,

the partial results of the computation need to be taken out of

the permanent data base, this is easy to accomplish. In the case
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of reliability mechanisms, the reason is the occurrence of a

fault in the computation. For other areas of operating system

mechanism, reasons include: conflict between two or more

processes over access to a resource, breaking of a deadlock, and

eliminating the effect of an aborted, partially completed

operation. Use of such techniques clearly enhance the ability to

undo the effect of a computation and as a result are used as part

of general purpose reliability strategies.

4.5.3.5 Permanence of Effect

Most reliability mechanisms incorporate some form of moving

important data from volatile storage to non-volatile storage to

achieve permanence of the effect of an operation. A

characterizing distinction between volatile and non-volatile

storage is the difference in probability that a device will fail

to properly record a value. Volatile storage devices have a

higher probability of failure than non-volatile storage media.

Examples of non-volatile storage include magnetic and video disks

and tapes, punched paper cards and tapes, printed paper copies

and even possibly replicated copies of data stored on a volatile

storage device.

Typically a reliability mechanism will insure that a data

base is stored on a non-volatile storage media before making a
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commitment (e.g. sending a positive response to a request) to

perform an action. Sometimes the old value of a record in a data

base that is about to be updated is moved to non-volatile

storage 6 so that a permanent record of the history of the data

base can be kept.

4.5.3.6 Restoration of Acceptable State

One of the purposes of reliability mechanisms is to aid in

the continued operation of a system. This means that the effect

of errors introduced as a result of faults must be removed so

that the normal assumptions about the syntax and structure of the

data bases of a system are valid. There are several different

anproaches to this:

o Restore a previously correct version of the data base
and continue the operation of the syste&. from this
point. The effects of all operations that were
performed by the system between the point where the
previously correct version was stored and the fault
occurred are lost.

o Explicitly remove the error from the data base, in
effect repairing the data base, so that it is in the
same state it was in before the fault. It is possible
that no information will be lost although this is
generally more difficult to perform.

o Force the data base into some acceptable state (possibly
an initial state) from which normal system operation may

6typically called a journal or a log.
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proceed. The forcing procedure typically examines the
data base as a whole, keeping those records which follow
the correct syntax of the data base and discarding
records which do not fit. After this reconstruction
procedure has taken place, the data base will be in some
acceptable state, however there may be no single
previous point corresponding to this state. This is
quite a common form of data base restoration used in
data management applications including file systems of
computer systems.

4.5.3.7 Bounding the Time During Which a Fault Causes Problems

To avoid cleanup operations, several reliability mechanisms

try to limit the time during which the occurrence of a fault will

require extensive data base repair. Typically this is done by

storing updates to a data base in a separate area and adding

these updates to the main data base by a relatively simple and

fast operation. For example, to add a group of elements to a

list, the list structure of the group is built first. Then the

group is added to the existing list by storing a pointer to the

addition into the end of the existing list. If a fault occurs

during the time when the additional list structure is being

built, the existing list structure is unaffected. The time

during which a fault can cause problems is limited to the time

the pointer at the end of the existing list is being updated.

This is a simple illustration of a general class of careful

weimaemt aorithms (See Section 4.5.4.8). A related

technique is the set of 2-phase cmmit protocols for coordinating
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the application of a logically single update to multiple

distributed data bases (see Section 4.5.4.9). The effect of such

protocols is to put a window on the period of time during which a

breakdown in communications will cause problems in coordinating

updates.

4.5.3.8 Use of Timeouts

Timeouts are a pragmatic form of fault detection that are

used extensively in distributed systems. One very practical

judge of whether a task has completed correctly is to determine

if it has completed at all. In systems where continued service

is important, timeouts are used as the ultimate assessment of the

health of providers of a service.

4.5.3.9 Summary

Specific reliability mechanisms make use of different

combinations of the generic techniques (or approaches) described

above. In the next section, a number of reliability mechanisms

which have potential use in distributed system will be described.

Each of these mechanisms applies the techniques described above

in different ways, usually dictated by the nature of the problems

being solved and the resources being utilized.
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4.5.4 Specific Techniques

4.5.4.1 Introduction

Specific instances of reliability mechanisms require that

variable aspects of generic approaches to reliability be fixed.

In addition, even more specialization is required when an

instance of a mechanism is actually implemented in a real

computer system. In this section, we present a catalog of ten

different specific mechanisms which are in current use in

computer systems for providing reliable operation. For each

technique, we consider the following two topics:

o Description of general method

o Example solutions that use method

Most reliability mechanisms have been developed for data

base management applications and as a result have been oriented

towards problems encountered in providing reliable access to data

bases. Many application programs fall into the category of data

base management, and as such can make use of standard mechanisms.

Other applications do not fit this model, but still have

requirements for reliable operation. General purpose mechanisms

tend to be much less sophisticated in the nature of the operation

performed by the mechanism. The focus for general purpose

mechanisms has been to provide the basic building blocks which a
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programmer can use to program reliability into an application

program. One area for future work is the development of general

purpose reliability mechanisms which are integrated into the

programming system (programming language, operating system calls)

in which applications are being developed.

4.5.4.2 Checkpoint/Restart

Description of general method

Checkpoint/Restart mechanisms combine three of the generic

reliability techniques described in section 4.5.3: data

redundancy, permanence of effect and restoration of acceptable

state. At intervals during a computation a complete record of

the state of the computation (a checkg.oint) is transferred to

storage which has a high probability of keeping the state

permanently. Magnetic tapes and disks are typical media used for

checkpoint storage.

If a fault occurs subsequent to the checkpoint, then the

only information that is lost is the state that was changed

between the checkpoint and the point of the failure. Given that

the failure was transient, a restart operation may be performed

by restoring the state that was recorded at the checkpoint and

continuing the computation. The rate at which checkpoints must

be taken is influenced by several factors:
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o The size of the state of an application.

0 The probability of a fault occurring.

o The maximum permissible period of outage; the importance
of timely completion of the application.

o The difficulty of taking a checkpoint at a given point
in a computation.

Recording the complete state of an application program can

be quite difficult, especially when the program is dealing with

arbitrary devices whose characteristics are not well suited to

being stopped or restored to a previous state. For example, it

is quite difficult to reverse progress in a shared file system

where multiple processes besides the one being checkpointed are

making entries in catalogs. Thus, points in the progress at

which an application program may be checkpointed are influenced

by the nature of the activities occurring in the program.

Examole of solutions that use method

As one of the most basic reliability techniques,

checkpoint/restart mechanisms are found in a number of existing

systems. The G operating system [23 is a good example of

the use of this technique in a distributed system.

4.5.4.3 Atomic Transaction
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Descriotion of general method

Atomic transactions attempt to provide a basis for order

when the occurrence of a fault would normally create disorder.

The generic techniques of atomicity, isolation of partial

results, permanence of effect, restoration of an acceptable state

and bounding the time during which a fault causes problems are

used in combination to provide arbitrary user defined operations

whose outcome in the presence of errors is well defined.

In the simplest form, an arbitrary number of application

programmer defined operations (e.g., statements in a programming

language) are bracketed by BeainAtomicAction and EndAtomicAction

operating system calls. The atomic action mechanism guarantees

that the group of statements bracketed will be executed as if

they are a single instantaneous operation. At one ir:=*ti rAir

effect cannot be seen in the state of an application and at the

next instant, either the entire effect will be observed or, if an

error occurred in the execution of the atomic action, the state

will not be altered. The instantaneous aspect of atomic actions,

while useful, is not the primary attraction from the standpoint

of reliability. Rather, the predictability of the effect of an

atomic action is of primary interest.

Several techniques have to be combined to achieve the
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behavior described. First, changes in state that occur during an

atomic action have to be reversible in case the occurrence of a

fault prohibits completion of the action. This requires

provision for reversing modifications that have been made to the

state of the application program. For data base updates,

reversal of modifications is usually done by keeping updates

separate from the main data base and applying the effect of the

atomic action to the data base as part of the processing of the

EndAtomicAction primitive. For resource allocations, a

corresponding deallocation must occur. Compensating for a

failure in a resource deallocation may present greater

difficulties because the same resource may not be reallocated due

to interactions with other concurrent applications competing for

the same resource.

There are a number of parallels in the requirements for

backing up a computation between atomic actions and backtrack

programming disciplines [171. In problems suited to backtrack

programming, there are usually a number of different alternative

solutions that may be possible, but no knowledge of which one

will be correct. The approach is to explore one possible

solution until it is determined that it cannot be the solution

and then to signal backup to the most recent branch point. All
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modifications to the data bases of the computation must be undone

(typically by inverse operations) and then the computation

resumed at the branch point. A maze solving program is an

example of a problem well suited to backtrack programming.

Techniques for reversing a computation developed for backtrack

programming should be applicable to recovery operations for

failed atomic actions.

Another addition frequently made to atomic actions is to

cause the effect of the action to be made permanent upon

termination. This way, once the EndAtomicAction has completed,

it is certain that the effects of the action will not be reversed

by a system crash. This primarily applies to data base updates

and the meaning of permanent is that the updates are moved to

some form of non-volatile storage (see discussion of stable

storage below).

Atomic actions are attractive for many reasons. From the

standpoint of reliability, they cause well defined behavior even

in the presence of failures. It is this well defined behavior

that permits an application program to take action which will

compensate for the error introduced by a failure.
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Examnle of solutions that use method

Numerous examples of proposed use of atomic actions

exist [4, 9, 16, 36, 41, 50]. Perhaps the best discussion of a

specific implementation of atomic actions is the description of

distributed data bases and System R [351.

4.5.4.4 Log, Journal, Stable Storage, Audit Trail

DescriDtion of general method

A log, journal or audit trail is a running record of

evolving modifications that are being made to the state of an

application program. The purpose of such mechanisms is to

carefully keep track of partially developed state information so

that in the event of a failure, this information may be

identified and manipulated (removed, reused, etc.). Logs combine

several generic techniques of section 4.5.3 including isolation

of partial results, permanence of effect and restoration of

acceptable state. The model for logs comes from the auditing

profession, where records of partially computed data are kept

even after the final result is obtained so that if some question

arises in the future it is possible to reconstruct the

computation that lead to the final result.

Historically, logs have been implemented by writing to

magnetic tape all pertinent information developed during the
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course of a computation. One reason tape has been used is

because it is inexpensive and can hold the large amounts of data

that result in such a recording operation. Current uses of logs

do not view the log as a permanent record of evolving

computations, but rather a temporary record that will be thrown

away after the computation has successful completed. Thus,

higher performance (and cost) storage devices such as disks can

be used for logs. The type of information written to the log is

usually data that cannot be reconstructed at some point in the

future. Examples include, input typed by users of the

application, the old value of a record about to be updated, and

intermediate results on which further processing will be

performed.

Consider the following example: The purpose of an

application program is to keep track of geographical positions of

military units. It does this by accepting input data from

different sources, and updates position information based on this

data. Since humans are involved in the typing of some input

information, it is desirable to handle the information entered as

carefully as possible. Also, since the information in the data

base is critical, it is important to insure its integrity. A log

could be used to record both backward and forward error recovery
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information.

A transaction (a period of interaction) is used as a bracket

to determine when information should be stored in the log and

when it is safe to discard the log; the period in which a human

enters new position information and verifies the updated position

is a transaction. Each new piece of information entered by the

user is immediately placed in the log. In addition, once the

military unit has been identified, the record of information

about its old position is written into the log. If by chance,

some part of the system fails before the new position record is

added to the data base, two different types of recovery action

can occur: First, a backward error recovery operation can be

performed where the old value of the position record is

reestablished 7 from the value stored in the log. Second, in a

forward error recovery operation, the update can be tried again

by using the human supplied input data stored in the log. If

only partial information was recovered from the log, that much

can be used and the user can asked to reenter a minimum amount of

input data. After the record in question has successfully been

7 This also requires that any partial remains of the new
position record be removed from the data base.
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updated, the entries in the log can be thrown away, thus ending

the transaction.

Providing high performance logs which display a low

probability of failure is non-trivial. Lampson and Sturgis [32]

discuss the steps that must occur to build stable storage out of

ordinary memory pages and disk pages. Stable storage is an

attempt to integrate logs into the normal style of accessing data

from the program's address space. In effect, certain parts of

the address space are identified as being capable of storing data

more reliabily than other parts. Lampson and Sturgis's technique

involves storing two copies of data in pages on the disk,

comparing the two versions to insure their integrity, and a

careful order for rewriting the two versions of a page. There

are obvious performance penalties of this approach and

suggestions have been made that stable storage can be built

completely in hardware. Until performance penalties have been

overcome, the amount of data which is required to reside in

stable storage must be limited.

Example of solutions that use method

Like checkpoint/restart mechanisms, togs have been used to a

great extent in data base management applications. Recent

proposals by Montgomery [41], Takagi [63) and Lampson and
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Sturgis [321 are good examples of the use of logging mechanisms.

Again, System R is a good example of logs integrated into a

complete system [35].

4.5.4.5 Intentions List, Differential File

Descriotion of general method

The focus of intentions lists and differential files is on

keeping partial results separate from a data base as a whole.

These are high level concepts in the sense that both mechanisms

are typically built out of lower level mechanisms such as stable

storage or other logging mechanisms.

An intentions list is a dynamically growing list of data

base changes that an application program would make if it were to

complete successfully. A differential file is a data base whose

changes are kept separate from the main data base. These two

techniques are essentially the same, differing only in their

emphasis. The rationale behind both approaches is that adding

records to a large data base is an expensive operation which can

be avoided by keeping all changes segregated in a separate file.

(From the standpoint of reliability, differential files are

useful because changes are kept separate from the unmodified data

base). Accessing a record in the data base requires that first

the change file and then, if no match is found, the main data
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base be searched for the record in question.

Example of solutions that use method

The best discussion of differential files is by

Severance [57]. Lampson and Sturgis [32] describe a crash

recovery mechanism which utilizes intentions lists.

4.5.4.6 Recovery Cache

Description of general method

Researchers at the University of Newcastle upon Tyne have

developed a reliability mechanism based on a hardware device

called a r cache (47, 24]. A recovery cache is a memory

device in which previously established state information is held

until the success of a computation involving that state has been

ascertained. Application programs are expressed as a series of

nested recovery blocks. As pieces of state information are

altered by the statements of the programming language (e.g.,

assignment statements), copies of the old values of state are

entered into the recovery cache. Each recovery block is

associated with an acceptance test that is evaluated as the block

is exited. If the acceptance test is passed, then the contents

of the recursive cache is discarded. If, however, a fault has

occurred during the execution of the recovery block, and the

acceptance test is not passed, the pieces of state altered during

the execution of the program in the recovery block are restored
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to the previous values stored in the cache.

In essence, the recursive cache is a fine grain log in which

values may be easily entered and recalled. There are some

questions as to the practicality of the recovery cache mechanism.

First, the entire mechanism is based on the premise that if a

recovery block fails the acceptance test, then there will be an

alternative recovery block which can be invoked with the restored

values and perform a functionally equivalent computation. Having

to write the parts of a program in multiple independent ways

seems to be questionable requirement. Second, the caching

discipline seems to be indiscriminant. For the mechanism to work

in a natural way, all values modified in a recovery block must be

backed up in the cache. The load on the recovery cache for

realistic computations would be extremely high -- possibly

requiring twice as many write memory references as a program

running without a recovery cache.

When an application is built out of multiple interacting

processes the problems with recovery blocks grow. The problem is

that a domino effect can occur unless interactions between

processes are carefully controlled [58]. A similar problem can

occur with multiple interacting atomic actions.
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The main benefit of the recovery block scheme is the

demonstration of a mechanism in which hardware reliability

devices and programming language constructs are completely

integrated. Programs are written in terms of reliability

requirements and considerations. This emphasis on integration is

clearly a proper direction for future work in reliability

mechanisms.

4.5.4.7 Salvation Program

Description of general method

A salvation program is used to force a data base back to a

state where an application program can make further progress.

The only guarantee made by a salvation program is that the state

of the data base is one legal state -- not the most recent legal

state nor even some previous state. A salvation program is

typically invoked after some inconsistency in the data base has

been detected. The reconstructed state is established by

scanning through the structure of the data base, possibly

deleting some uninterpretable data record and possibly

constructing plausible linkages between unlinked records, based

on a known property of records in the data base.

Salvation programs are frequently used to insure the

integrity of file systems. After a system crash, the contents of
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the long term storage medium (typically disks) is examined to

insure that the data conforms to a legal instance of the data

structure of the f.le system. If it doesn't, then an attempt is

made to reconstruct as much of th! file system data structure as

possible. This operation is greatly enhanced by self identifying

data records (e.g. pages of a file), in which redundant

information is kept about the position of a record in the larger

file system data structure.

For salvation program techniques to be generally effective

for application programs, they must be extended beyond the file

system level and made available to individual application

programs. The major advantage that salvation programs have over

other reliability mechanisms is that they can make use of special

knowledge about the correct structure of an application program's

data structure. A file system salvation program incorporates

knowledge of the correct form of data used to link together pages

into files and files into directories. Great benefit and

leverage in reconstructing a consistent data base results from

such knowledge. A desirable, although infrequently provided

extension to system salvation programs is to allow an application

program a chance to examine and possibly reconstruct its data

bases after a failure has occurred but before normal operation of
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the system resumed. A similar advantage could be exercised in

forcing the application data bases back to a consistent state.

Examole of solutions that use method

A good description of salvation programs is contained in a

survey article by Verhofstad [69]. Two good examples of

salvation programs are the Multics file system integrity

mechanism (60] and the Alto disk salvager (33].

4.5.4.8 Careful Replacement Algorithms

Description of general method

The purpose of careful replacement algorithms is to avoid

the possibility of partially updating a data structure by making

the period when updates occur in place be as short as possible.

This frequently is done by building an updated part of a data

structure separate from the main data structure and then adding

the updated portion by storing a single pointer to the new

portion. Another approach is to turn flags on or off indicating

that a record is or is not part of the main data structure.

Whatever approach is taken for adding the updated portion to the

data base, the operation must leave the data base vulnerable to

failures for a short period of time.

Examole of solutions that use method

Careful replacement algorithms are frequently used as part

of other mechanisms. For example, the crash recovery algorithm
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whether they can commit their part of the multi-site
transaction (e.g. they haven't already unilaterally
aborted). Each site becomes r prepared to go
either way and awaits the coordinator's decision. Once
all sites are prepared to commit, the coordinator makes

its decision and all sites are notified to commit the
transaction during phase two of the commit protocol.

Being prepared to commit means that the site will
not require any additional resources to commit the
transaction. Obtaining additional resources could cause
deadlock ... . Once a site expresses its willingness to
commit, it is no longer allowed to unilaterally abandon
the transaction. Forbidding sites from unilaterally
abandcning a transaction during commit processing
compromises local site autonomy, but it allows the
coordinating site to assume that sites will remain able
to commit (or abort) until the coordinator is able to
decide which way to go.

Example of solutions that use method

Several specific mechanisms have been used various forms of

2-phase commit protocols. Thomas 641] used an early form of this

protocol to coordinate the application of updates to a

distributed data base. Lampson and Sturgis [32] use a 2-phase

commit protocol. A good description of alternative forms of

2-phase commit protocols appears in (35].
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4.6 Integrated Approaches to Reliability in Distributed Sy5cem:

The major problem with the various mechanisms described i-.

the previous section is that each mechanism is separate unto

itself with no consideration of hcw it fits in with other

mechanisms and services of an operating system. Providing hs

reliability mechanisms that may be used by application

programmers to program reliability is one step towards aiding tre

construction of reliable programs. A mcre helpful development,

however, would be mechanisms that reduce the amount of

application specific programming that has to occur to provide

reliable operation.

What is needed is an integrated framework for programming

applications that will lead naturally and easily to reliable

operation. Several existing computer systems have started along

this path, however we are still in the early stages of

development of such systems.

4.6.1 Tandem Guardian Operating System

Tandem Computers has built an operating system aimed at

rupporting applications that have high reliability requirements.

An example of one such application is automatic toll billing fcr

telephone systems. Quoting from [29, 2],
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The Tandem/16 computer system is an attempt at
providing a general purpose, multiple computer system
which is at least one order of magnitude more reliable
than conventional commercial offerings. Through software
abstractions a multiple computer structure, desirable for
failure tolerance, is transformed into something
approaching a symmetric multiprocessor, desirable for
programming ease.

The hardware of the Tandem system is typical of hardware

intended for high reliability and availability: multiple

redundant processors, power supplies, busses, disks, etc. The

basic strategy employed in the software of the Tandem system (and

the motivation of the name of the company) is a b system.

From 12]:

The system structure can be summarized as follows.
Guardian is constructed of processes which communicate
using messages. Fault tolerance is provided by
duplication of components in both the hardware and the
software. Access to I/O devices is provided by process
pairs consisting of a primary process and a backup
process. The primary process must checkpoint state
information to the backup process so that the backup may
take over on a failure. [The backup process normally
executes a program which merely checkpoints data passed
to it by the primary process. It is, however, capable of
running the same program as the primary process in the
event of the failure of the primary.] Requests to these
devices are routed using the logical device name or
number so that the request is always routed to the
current primary process. The result is a set of
primitives and protocols which allow recovery and
continued processing in spite of bus, processor, I/O
controller, or I/O device failures. Furthermore, these
primitives provide access to all system resources from
every process in the system.

Thus, the basic organizing principle behind the Tandem system is

redundant control points which track the progress of an
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application program by recording its outputs to long term storage

devices. The loose coupling of multiple components in the system

makes dynamic reconfiguration relatively easy, since all

interactions are by messages which are addressed to functionally

named components. In the event of a failure, the backup process

can pick up the computation by proceeding from the last

checkpoint, utilizing data received in previous checkpoints.

The Tandem system provides the capability for developing

reliable application programs. It is, however, the

responsibility of the application programmer to program

reliability measures into the program using the system provided

primitives. Since these primitives are rather low level (as

contrasted with BeginTransaction and EndTransaction primitives),

considerable effort must be invested for each new application

program developed on the Tandem system.

4.6.2 IBM System R

For a number of years, the IBM San Jose Research Laboratory

has been investigating the design and implementation of

relational data management systems in the form of Syste .

System R originally served as a vehicle for research in

relational data management and user and programmer interfaces to

relational data bases. With the advent of distributed systems,
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System R has been used as a testbed for new research in

distributed systems and the problems of providing reliable and

high performance access to a distributed relational data base.

The System R recovery facility [35] is aimed at solving

reliability problems associated with:

o Transaction ai (aborts): Undoing the effects of an
incomplete transaction during normal system operation.

o Site failure: Bringing the on-line data base to a
consistent state following an unplanned interruption of
service at a single site.

o Media failures: Repairing damaged portions of an
on-line, non-volatile data base.

Many different mechanisms are used in coordinated ways to

achieve the desired results, including: atomic actions with a

two-phase commit/abort protocol, forward recovery logs (logs that

record actions that must be performed), backward recovery logs

(logs that record previous state information), checkpoints which

are used to limit the amount of log information which must be

scanned during a restart operation and careful replacement

algorithms for manipulating modified pages of the data base.

System R represents an engineering solution to providing a

reliable distributed relational data management system. The

techniques are used in a very well orchestrated manner, utilizing

as much knowledge of the operation and accessing patterns of

- 115-



System R as possible. The description [35] of how many different

mechanisms dealing with reliability (as well as other system

issues) indicates the delicate balance that must be created in

order to end up with a system which displays significant

improvement in reliability.

4.6.3 Other Integrated Systems

There are several other examples where reliability

mechanisms have been integrated in with other mechanisms to

produce one cohesive system.

The IBM Distributed Processing Programming Executive

(DPPX) (30) is an operating system designed to support

distributed processing with the IBM 8100 computer system. The

Data Base and Transaction Management (DTMS) (70] portion of DPPX

provides a reliable atomic transaction facility integrated with

other system functions including data base management.

NASA has sponsored two different designs for ultra-reliable

computing systems intended to control potentially unstable

aircraft. Both the SIFT (Software Implemented Fault Tolerance)

computer (71) and the FTMP (Fault Tolerant MultiProcessor)

computer (23] make heavy use of redundant resources for insuring

that the failure of any single point will not cause the failure
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of the system. In SIFT, "iterative tasks (the repetitive tasks

that must go on in aircraft control) are redundantly executed,

and the results of each iteration are voted upon before being

used. Thus, any single failure in a processing unit or bus can

be tolerated with triplication of tasks, and subsequent failures

can be tolerated after reconfiguration" [71). The FTMP design

"is based on independent processor-cache memory modules and

common memory modules which communicate via redundant serial

busses. All information processing and transmission is conducted

in triplicate so that local voters in each module can correct

errors. Modules can be retired and/or reassigned in any

configuration. Reconfiguration is carried out routinely from

second to second to search for latent faults in the voting and

reconfiguration elements. Job assignments are all made on a

floating basis, so that any processor triad is eligible to

execute any job step. The core software in the FTMP will handle

all fault detection, diagnosis and recovery in such a way that

application programs do not need to be involved." [23] A paper by

Rennels [51] compares SIFT and FTMP. The special nature of these

two systems (control applications) and the importance of the

tasks on the safety of humans, justifies the rather expensive

approach taken in both systems.
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4.' Summary of the New Reliability Requjiements and Capabilities
of Distributed Systems

Techniques for insuring the reliability of computer systems

have been used for a long time -- probably from the start of the

use of computers. Indeed, with the earliest computer systems

that had a short mean time to failure, computations requiring

longer than the mean time to failure had to have relatively

frequent checkpoints taken, just to finish a normal run. Thus,

the need for reliability mechanisms in distributed system is not

new. Re3st.nable questions arise:

o What is new about distriuuted systems in their
requirements on reliability mechanisms or in their
capabilities to provide reliable service?

o Do we need to develop new reliability mechanisms for
distributed systems or are the mechanisms used in
current single site systems sufficient?

In this section we discuss three attributes that distinguish

distributed systems from single site systems in the area of

reliability: Independence of Failure, Need for Coordination and

Need for Flexible Binuings. Each of these attributes require new

approaches for providing reliable operation or modifications to

existing reliability mechanism,.

4.7.1 Indepcndence of Failure

/

The major new cpability of a distributed system regarding
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reliability is that the parts of the system have the potential

for operating with true independence. Emphasis is placed on

potential, because it is also possible to build distributed

systems in which the failure of one component will induce the

failure of other components.

It has always been difficult to make convincing arguments

about dynamic or real-time reliability mechanisms that insure

continuous operation in a single site system. This is because

the fault that caused the error will either cause an error in the

error recovery programs or persist and cause another error if the

system is somehow restarted. With distributed systems built out

of many interacting components, a convincing argument can be made

about the independence of the multiple components. Thus it is

possible for one component to work perfectly even though another

component has failed. The correctly operating component can

perform error recovery operations to compensate for the effect of

the failed component.

While many aspects of the isolation of one component from

another are inherent in the architecture of distributed systems,

some dependencies can creep into a system. Examples include:

o A distributed system built out of many components in a
single building will not be able to tolerate the failure
of electrical power to the entire building.
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o A multi-component application program where one
component acts as a central controller, will not be able
to survive an error in the central component.

o A multi-component system in which the components are
connected by a single communications path is susceptible
to failures if the communication path is broken or
flooded with messages from a malfunctioning component.

Thus, a distributed hardware architecture alone will not

yield systems that are inherently more reliable than single site

systems. The real issue is distribution versus centralization in

all aspects of system operation: hardware, programs, data

storage, communication paths, decision procedures, system

monitoring, etc. The architecture of single site systems pushes

most of these issues towards centralization. The architecture of

distributed systems makes it possible to provide these features

in a distributed way so that independent operation can be

achieved. It is still possible, however, to end up with a system

built on a distributed architecture in which many of the features

are centralized with no independent recovery components and thus

become a weak link from the standpoint of reliability 8 .

8There may still be good reasons for building such centralized
facilities on a distributed architecture. Performance
characteristics might be one such reason.
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The conclusion is that a major difference between

distributed systems and single site centralized systems with

respect to reliability is the potenial for independent, isolated

operation. This potential is just a foundation that must be

carefully utilized to develop an entire system whose components

are truly independent with respect to the propagation of errors.

4.7.2 Need for Coordination

Just as distribution admits new possibilities for robust

operation, it also causes new problems due to the extra

coordination required between the components of a distributed

system. Reliability mechanisms that yielded effective insulation

from failures in centralized systems either do not work, require

added mechanism or exhibit poor performance when coordination is

required between multiple components.

Some reliability techniques simply do not work (in their

original form) in a practical distributed system. One example is

salvation programs. Generally for a salvation program to operate

properly, all activity modifying possibly corrupted data bases

must cease. The salvation program views the entire data base and

tries to make sense out of the remains of data that contains

errors. For distributed systems, this would involve inspecting

the entire distributed data base of the system and correcting
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inconsistencies that might possibly span component boundaries.

This is both difficult and impractical in a distributed system;

Difficult, because it is hard to stop multiple asynchronous

systems all at the same point with respect to the salvation

program. Impractical, because the nature of a distributed system

is that unfailed components should be able to proceed as normally

as possible without being impacted by the failures or recovery

actions of other components. This runs counter to the philosophy

of a salvation program approach to failure recovery.

One modification to the salvation programs which will work

in a distributed system is to structure the data base of the

system so that each component manages its own local part and

allow a salvation program to be invoked on each part. The only

coordination between the multiple components of the distributed

system is the transmission of the order to start the salvation

procedure. After that, each component proceeds to force

consistency in its own private part of the data base. Notice

that this approach is very similar to the use of atomic

transactions and intentions lists in a distributed system.

Distributed invocation of salvation programs and distributed

application of intentions lists are representatives of a class of

reliability mechanisms which require additional coordination
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mechanisms to deal with the multiple components of a distributed

system.

The suggested modification of salvation programs presented

above, suggests a general model for transporting a reliability

mechanism from a single site system to a distributed system. The

following scheme is a very high level view of the generic

modifications that must be made to centralized mechanisms:

1. Start off with a mechanism that is invoked by the
single control point in a centralized system and works
on a logically centralized data base.

2. Design the distributed application program so that the
previously logically centralized data base is
distributed among the components. Each component has
complete control over the records in its portion of the
data base. Components cooperate in the distributed
application program by exchanging messages and
performing local data base queries and updates.

3. Where the centralized system formerly made a decision
to invoke the reliability mechanism, design procedures
for reaching a similar decision among the components of
the distributed system. There are several alternatives
here. One possibility is to have one distinguished
component be responsible for initiating the recovery
action. Another is to allow any component to initiate
the recovery action, but to come up with a method of
mediating conflicting recovery decisions. In any case,
this coordination step can be quite complex and
difficult to achieve, especially in the presence of
errors.

4. Determining the scope of a recovery action among
multiple asynchronous components is a difficult task.
To make sense out of unsynchronized operations, the
concept of a task or transaction is often introduced.
In addition, all modifications to the data base
performed during a given (uncompleted) transaction are
labeled as such and in some cases, kept separate from
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the main data base.- Once the concept of a transaction
whose effects on the data base are well distinguished
has been developed, then communicating orders about
recovery actions for a given transaction among the
ccmponents becomes easy.

The coordination additions suggested above do have their

price. There are generally two added problems: Performance and

Complexity. A considerable amount of overhead is added to a

centralized mechanism to make it function properly 'n a

distributed environment. The use of transactions, keeping

updates associated with a given transaction separate from the

main data base, and the extra communication necessary to complete

a transaction all decrease the throughput of a distributed

application program. In addition, coordination procedures to

insure that

1. Simultaneous independent decisions by separate
components do not interfere with each other

2. Failures that may occur during the operation of a
recovery procedure do not cause problems

add considerable complexity to mechanisms. Unless care is taken,

the impact of coordination on the performance and complexity of a

simple centralized algorithm can destroy its effectiveness.

4 .7 .3 Need for Flexible Bindings

The desire to have the components of a distributed

application program bound to each other in a flexible manner
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arises from several different concerns. Reliability is one such

concern. Others include a desire for scalable application

programs and application programs whose composition of components

changes over time. The common interest of each of these concerns

is for dynamicall changing b.

A bd is the means of attaching one component to

another. In the context of distributed systems, the components

are the separate parts of a distributed application each

(possibly) executing on a separate single site system. Bindings

take many different forms: communication paths, stored names,

shared resourses (files, semaphores).

From the standpoint of reliability mechanisms, the interest

is in flexible, reversible bindings between components. These

are to be used in dynamically reconfiguring a system when a

component has failed. For example, in the Satellite Image

Gathering example of Section 3.3.2.2, multiple units are bound

together to accomplish a task. If one of those units were to

fail, we would like to get rid of all bindings to that failed

component and make new bindings to some other spare component

which could perform the same (or perhaps similar) function.

To motivate some of the issues associated with flexible

- 125 -

. . . ...........



bindings, let us consider a scheme in which the components of an

application program are dynamically bound together by finding an

instance of a generic component and using an identifier for the

instance in primitives for sending and receiving messages. If a

failure occurs in one component, then as part of a recovery

operation, a new instance of the failed component will be created

and the new instance will be brought " to date by replaying all

of the interactions that occurred between the previous instance

and the other components. At that point, interactions may resume

with the new instance as if it were the old instance.

Figure 8 contains prototypical calls on six system

primitives associated with flexible bindings. In this set of

primitives, there are several different entities:

o Instance: An Instance of a component is one specific
component chosen out of many components, all of which
may provide a generically named service.

o LogicalName: The LogicalName is a character string
representing the generic service.

o Log: A Log is storage used to record all of the
interactions that occur between two components. Logs
are used in the event of a failure to replay all of the
commands issued by one component to a new instance of a
generic component.

Figure 9 illustrates use of these primitives. In this

example, a process A establishes bindings to processes B and C by

use of the Bind primitive. In addition tu establishing bindings,
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Instance Bind(LogicalName);

Log CreateLogo;

Status Send(lnstance, Request, Log);

Status Receive(Instance, Response., Log);

Instance Rebind(LogicalNane, Log);

Status DeleteLog(Log);

Figure 8. Operations on Flexible Bindings and Logs
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A Binstanc:-Bind (W);

BLog:inCruetLog q

Clnstmnoin'inind (VC');

CLog:-CruutLog ~

Send (BIns~nce.
Request, BLog);

Receive (B Instw,
Response CLog);

B Moffunctions:

Blnstaice:-Rebind ('8', BLog);

Figure 9. Use of Flexible Binding Primitives
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logs are also created for each set of pairwise communications.

Normal operation occurs by process A performing computations,

interacting with processes B and C by use of the Send and Receive

primitives. Each time a Send or Receive is performed, the

arguments are recorded in the Log associated with the interacting

process. If no failures occur, then at the completion of the

computation by A, the logs are discarded. If, however, an error

occurs in, say process B, then a new instance B' is created using

the Rebind primitive. In addition to the LogicalName, the Rebind

primitive takes a Log as an argument. The contents of the Log

are replayed to the new instance B'. For Send operations, the

same arguments are sent to B'. For Receive operations, the

results of Send operations by B' are examined to insure that they

are the same results produced by B. Once the contents of the Log

are exhausted, B' should be forced to the same state B was in

just before the failure occurred in B.

This rather simple scenario gives a motivation of the

possible use of flexible bindings. There are clearly 3ome

problems with the rather simple set of primitives presented

above:

o B' will not always be able to give an identical response
as B to commands issued by A. Equality of responses
must be generalized to be less rigid.

o Pairwise interactions are not the only types of
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interactions that occur in systems. A m;4y send the
results produced by B to C. B could alzo fen requests
sent by A to some third party D. High level knowledge
about the structure of interactions between the dynamic
components of a distributed system needs to be factored
into the Request and Response logging mechanism.

This preliminary discussion of flexible bindings illustrates

the important concepts, but just touches the surface of the

mechanism needed. The true potential of independent components

requires some mechanism for establishing and reestablishing

flexible bindings.

3
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4.8 Areas of Incompleteness

There are a number of areas where additional developments

are needed before truly reliable distributed systems will be a

reality. Such development are not in the area of new reliability

techniques: existing modern approaches to providing reliability

in single site computer systems appear to be adequate building

blocks for reliable distributed systems. Rather, new

developments are needed in integrating existing approaches into

the primitives of real systems and providing the primitives

necessary for coordination and configuration control in the

distributed system. The following four topics need further

attention in future research:

1. Integration of mechanisms into operating systems.

2. Appearance of reliability mechanisms in a programming
system.

3. Coordination between components of a distributed
system.

4. Use of flexible bindings in distributed systems.

4.8.1 Integration

Most of the reliability mechanisms discovered in the course

of our investigation were stated apart from any considerations of

how they fit in with the other mechanisms of an operating system

or how they contribute to the reliability of the operating system
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itself. To be generally useful, reliability mechanisms have to

be fully integrated with such mechanisms as resource control,

interprocess communication and file storage mechanisms. In fact,

each of those mechanisms will have a certain part devoted to

providing reliable operation.

For example, assume that if a process A ceases to

communicate with other interacting processes, the interprocess

communication facility will time-out and notify a process B who

has sent a message to A that a fault has occurred. To recover

successfully from this fault, B must invoke aspects of the

resource control and file storage mechanisms dealing with

reliability to undo the effect of the failure. This would

involve releasing resources acquired as a direct result of the

interaction with A and undoing changes to files that were done in

anticipation of completing the interaction with A. It is

desirable for most of the actions related to the reliable

operation of an application to be done by a general purpose

mechanism.

Existing implementations of reliability mechanisms are

typically built for special purpose applications such as data

base management applications. New applications that do not fall

into the data base management paradigm cannot use the reliability

-132-



mechanism. Emerging systems such as the Tandem Guardian

operating system do have reliability mechanisms built into the

basic operations of the system and this trend should be expanded

and encouraged in the future. There is a parallel here regarding

protection mechanisms in operating systems. Early operating

systems had minimal, if any, protection mechanisms built into the

system from the start. As the requirement for protection in

operating systems became apparent, protection mechanisms were

added to the existing operating systems, with rather

disappointing results. Information in the system was protected

in many cases, but there were a number of lapses in the

protection barrier. The lesson learned was that protection added

as an afterthought does not create a secure system.

A similar effect is most likely to be experienced with

systems where reliability mechanisms are added as an

afterthought. Many areas of unreliable operation will be

eliminated, however there will still be many unanticipated areas

of weakness. This is why a system built from the start with

reliability mechanisms integrated in with other facilities of the

operating system is preferable over systems where reliability

mechanisms have been added.
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4.8.2 Appearance of Reliability Mechanisms in a Programming

System

Mechanisms, alone, do not solve all issues associated with

building application programs. A mechanism needs to have a

representation in a programming system: language features,

resource features, and operating system calls. Mechanisms need

to be given first class treatment in programming systems in order

to be used naturally and easily by programmers in applications.

Many times the perceived benefit of a mechanism is judged by the

understandable, easy to use representation of the mechanism

rather than just the raw details of the service provided by the

mechanism.

Relatively little in the way of language representation has

been provided for reliability mechanisms. Language features such

as exception handlers appear in languages such as PL/1 [26] and

Ada (27]. Exceptions and exception handlers allow a programmer

to invent names for abnormal situations in a program and write

procedures for handling (correcting, cleaning up, aborting, etc.)

these abnormal situations. The suggestion has been made that

atomic actions can be specified by surrounding the body of an

atomic action by operating system calls such as

BeginAtomicAction() and EndAtomicActiono, and indicating atomic

action failure by AbortAtomicAction(), however there seems to be
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more to the definition of an atomic action than this simple set

of subroutine calls. For example, it might be necessary to

specify the set of resources to be used during the execution of a

transaction.

It is desirable to incorporate all of the semantics of a

reliability mechanism in a programming language so that the

compiler for the language can, at compile time, check to make

sure the primitives are being used correctly and that proper

optimizations are performed. In addition, a benefit of

incorporating a syntax in a language for the facilities of a

mechanism is that programmers tend to make better use of the

mechanism since it is easy to use and well integrated with the

other features of the language. For example, in the Pascal

language, there are standard language definitions of files:

opening, closing, reading records, writing records and

positioning to specific records in a file. As a result, the use

of structured data in programs and storing structured data on

files is well supported and utilized naturally by Pascal language

programmers. The Pascal compiler knows about the contents of

files through precise declarations of the record structure of a

file. Uses of the file primitives can be checked to insure that

the contents of a record of a file are being read into a variable

- 135 -

j I I ' -.. . .-



of the proper type. Many of the steps that a programmer in a

language that did not have the concept of files would have to

program explicitly are done automatically for a Pascal programmer

by the file features in the language. In a similar manner, the

meaning of reliability mechanisms can be incorporated into a

programming language. Recent work by Shrivastava [59] has

demonstrated one approach for embodying reliability mechanisms in

a programming language.

4.8.3 Coordination between Components

Given the previously stated conclusion that distributed

reliability mechanisms should be built out of coordinated use of

reliability mechanisms at multiple single sites, there is a clear

need for mechanisms for coordinating the actions of multiple

components. An example of one such mechanism is the two-phase

commit protocol 135).

There are many coordination (synchronization) mechanisms

currently in use in tightly coupled multiprocess (and

multiprocessor) systems. Examples include semaphores [10],

monitors [22) and messages [53. The problem with generalizing

such mechanisms into a distributed environment is performance.

The performance of the coordination mechanism has to match the

granularity of the events being coordinated: if the events are
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small and frequent, the delay introduced by the coordination

mechanism must be small.

Existing coordination mechanisms, such as the two-phase

commit protocol tend to add a rather high overhead to the

operations performed by the individual components of a

distributed computation. As a result, the distributed

reliability mechanisms that make use of the two-phase commit

protocol must require infrequent synchronization to achieve good

performance. For example, when a distributed atomic action is

accomplished by using the two-phase commit protocol to coordinate

multiple component atomic actions, the size of an atomic action

must be relatively large to achieve reasonable performance.

Lighter weight coordination mechanisms need to be investigated

for those applications utilize reliability mechanisms that

require more frequent coordination between components.

4.8.4 Flexible Bindings

The discussion in section 4.7.3 on flexible bindings

presents a brief discussion of possible primitives for providing

bindings between components that may be established dynamically

and may also be broken and reestablished in a manner that allows

a distributed application to proceed in the presence of failures.

That discussion only touches the surface of this topic.
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Questions that need to be answered include:

o What is the best form and appearance of reversible
bindings?

o What data structures are needed to support flexible
bindings? What type of data must be transferred among
the components of a distributed application?

o What are the primitive operations that may be performed
on bindings?

o How do spare components to which bindings have been
newly established receive all of the state information
that a broken component had developed?

o What is the best instantiation of flexible bindings in a
programming language?

Research needs to be done in at least the areas outlined in

this section before reliable, distributed application programs

can be written in an easy and natural way.
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5. GLOBAL RESOURCE MANAGEMENT

5.1 Introduction

A computer system needs the "raw materials" of computing in

the form of hardware, input data, and programs in the same way

that a business needs workers, raw materials, and tools to

fashion its products. A business with plants situated in

different cities must devote some effort to planning the movement

of people and goods in order to reduce costs. Many factors are

involved in this planning, from major long-term decisions such as

where to locate a new plant, to the day-to-day operational

decisions about feed stocks, inventories, and the size of the

work force. Generally, higher levels of management are

responsible for long range planning while lower levels handle

more immediate decisions. External constraints (e.g., the

location of a coal field) force some decisions but in other cases

there may be great latitude (e.g., assigning production of a new

product to one of several factories).

When computer systems become distributed similar effects are

observed. This chapter concerns the nature and scope of the

planning decision necessary for the efficient operation of a

distributed computer system; we call this a1obal resource

- I -i,
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managemt. The focus is on the role of global resource

management in meeting performance goals. The alternative aspects

of the proof of correctness of the resource management strategies

and reliable resource management will not be addressed.

Administrators may treat any computer system, distributed or

centralized, as a "black box" and dictate the resource management

policies to be obeyed by the box without regard for its internal

structure. Thus it should not be surprising that distributed and

centralized systems can share the same terminology for policy

statements about resource management.

Even for centralized systems in which the resource

management problems are simpler 9 resource management is rarely

treated comprehensively or formally. Management policies tend to

be implicit in system code, and not well documented or

understood, for a variety of reasons:

1. Different resource managers are often designed by
different people, resulting in widely divergent
management strategies.

2. As systems are "tuned" over time, tests for special
cases tend to accumulate in a resource manager with the

9because there are fewer resources and processes, and because
the system topology is simpler.
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result that the total behavior of the manager is
undocumented or undocumentable, and the interactions of
the special cases become incomprehensible even to the
system programmers.

3. Management policies are often chosen with hidden goals.
For example, priority may be given to one class of jobs
provided that the processor utilization is not
depressed "too far" -- and the limit is never
quantified.

Before proceeding to the more difficult problems of global

resource management, therefore, we take special care to clarify

the language and goals of resource management in general.

In distributed systems the resource management problems are

not so much different from centralized systems, but rather

enormously magnified. There are many more processes and

resources, many more management decisions per unit time, and very

complex system interconnection topologies. All of these factors

exacerbate the resource management problems in distributed

systems.

There are three major limiting factors to the benefits that

can be achieved by global resource management:

1. Message delays between components of tae distributed
system.

2. The extent of administrative authority across
geographically dispersed sites.

3. The complexity of the resource usage patterns of the
system workload.
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By making the message delays small enough, and administrative

controls strong enough, a distributed system can be made to

appear essentially identical to a single site multiprocessor with

shared memory. Without some administrative control over the

resources at different sites, global resource management is

impossible since local resource managers could arbitrarily

withhold resources from distributed tasks. Thus we assume in the

remainder of this section that message delays are substantially

longer than in single site systems, and administrative control

over at least some distributed resources is possible.

The sheer size of distributed systems as measured by the

number of processes and resources which interact within them is

the greatest impediment to effective resource management.

Operating systems theory has produced optimal algorithms or near-

optimal heuristics for only the simplest resource usage patterns,

often under inrealistic assumptions. For example, a large body

of theory is concerned with deterministic processor scheduling;

almost all of the results depend upon prior knowledge of the

resource demands of the executing processes, and consider

requests for only a single resource. These are both unacceptable

assumptions in a real system. In addition, deterministic

scheduling theory does contribute cause for pessimism, since in
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many cases it can be shown that optimal scheduling problems

become computationally difficult (NP complete) when the number of

interacting processes exceeds two or three. We begin with the

understanding that global resource management will not be based

on optimal scheduling.

The remaining paragraphs in this section define terminology

and provide examples to clarify the fundamental concepts.

Section 5.3 discusses the importance of the amount of time

available to plan and execute plans for resource management.

Section 5.4 describes the elements involved in formulating

policies for resource management. Section 5.5 turns to resource

management problems specifically associated with distributed

systems, and classifies the major design decisions. Section 5.6

discusses two global resource management strategies in depth,

stating policies and defining the mechanisms necessary to achieve

them.

5.2 Terminology and Fundamental Concepts

5.2.1 Processes and Resources

At the heart of resource management are the concepts of

processes and resources.

The process concept is often employed but rarely formally
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defined 10 . For our purposes we adopt an informal approach, and

define a process as a time ordered sequence of states, where the

transitions from one state to another are made by an active agent

called a processor following the transition rules or instructions

of a 2roIn. Thus, processes imply the existence of a processor

and a storage medium to hold representations of the state and

program. Processes accomplish all of the useful work of

computers through their state transitions. Modern operating

systems give the user the means to create new processes, organize

processes into hierarchies, transmit messages between processes,

destroy processes. Even so the typical user of a single host

s em has one associated process (executing a program such as an

editor, compiler or mail program) which is active at any given

time. The user of a distributed system, on the other hand, must

have at least one process active at each site involved in a

computation. Our experience with the National Software Works

suggests that many more processes will probably be involved.

A resource is an object that a process must possess in order

to make computational headway. Resources may be indivisible

10A formal definition has recently been described in [39].
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(e.g., a lineprinter can only be used by one process at a time)

or divisible (e.g., memory can be partitioned among several

processes). A process may need a threshold amount of a divisible

resource to proceed (e.g., a tape merge requires at least 3 tape

drives) or the rate of progress of the process may be an

increasing function of the amount of a resource it possesses

(e.g., a process receiving 10% of the processor proceeds faster

than a process receiving 5%). A resource is capable of being

possessed by at least two processes (otherwise there is no need

for management), and observes an exclusion constraint which

prohibits it from being owned by all processes at all times. In

order to acquire a resource it does not possess, a process issues

a reguest for the resource; to designate that it no longer needs

a resource, a process releases the resource. Reauest and release

operations may be explicit actions of a process, or implicit in

some aspect of its behavior.

In most general purpose computing systems both primary

memory and the central processor are resources, because a process

cannot proceed unless it has both. Other examples of resources

in these systems are disk volumes, disk controllers, tape drives,

and communication lines. In any given system the set of

components which are regarded as resources depends upon the
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system's structure. Real-time systems, for e,-Rmple, dedicate

primary memory space to high priority process-, to minimize

process switching time. Because these processes cannot be

delayed by requests for primary memory, for them, primary memory

is not a resource.

All of the resources mentioned above are py resources,

pieces of machinery that are distinguishable in the computer

room. Through software, virtul resource can be created in a

manner analogous to the implementation of virtual memory from

physical memory. Processes can reouest, use, and release virtual

resources just as they do physical resources. Perhaps the most

prominent example of virtual resources is a Jatabase lock. A

process is required to acquire the lock before accessing the

database or some part of it, and to free it when it is through.

Resources exist at different levels within a computer system

and change their appearance from different viewpoints. Typically

there are resources visible to the processes of the operating

system which are invisible to user processes (e.g., process

control blocks and I/O buffers). Resources at one level may be

utilized to implement virtual resources visible at a higher

level, following hierarchical design principles. For example,

individual disk blocks, volumes, and controllers are rarely
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visible as resources at the application program level, having

been recast into the more abstract virtual resources, files and.

data records.

5.2.2 Resource Management

Since all work done by a computer system is done by

processes, the execution of a reguest or release instruction must

be carried out by a process. We call such a process a resource

manager. For most of this discussion we assume that each type of

resource is managed by a separate resource manager1 1 , and we will

view the request and release instructions as interprocess

messages to the resource manager from its clients, the processos

which use the resource. The resource manager always possesses

the idle units of its resource, i.e., those not possessed by its

clients.

A distributed computation by definition includes processes

on several hosts. Global Resource Management refers to the use

of global information about distributed tasks to control the

1 1This is an important assumption. Briefly, independent
managers for resources increase the possibility of deadlock and
decrease resource utilization; monolithic managers for several
resources are extremely complex to build and difficult to
document.
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physical resources on individual hosts as well as virtual

resources that are composed from more primitive elements,

possibly residing on several hosts.

A resource manager has responsibilities in two areas:

logically correct behavior and performance 12 . A resource manager

behaves correctly if it obeys the exclusion constraints for its

resource, and responds appropriately to reguest and release

messages; we do not pursue correctness further. Because a

manager can choose to arbitrarily delay any process issuing a

reouest, and perhaps can preempt resources or reclaim them

immediately from unwilling processes, the manager can control the

rate of progress of its clients to some degree. This control

does not affect correct functioning but manifests itself in

system performance measures (response time, throughput, etc.).

The extent to which a resource manager can affect

performance depends critically on the information the manager can

obtain about the future pattern of reouest and release messages.

With no information available other than the reouest and release

1 2Managers are also occasionally concerned with security, i.e.,
the prevention of unauthorized access to resources, but this is
not relevant here.
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messages as they occur, a manager can do nothing more than to

maintain correct function.

Managers can obtain additional information that can

influence allocation decisions, of four basic types:

1. imposed

2. deduced 3
3. statistical

probabilistic
4. volunteered

The first two types are utterly dependable; barring system

failures, the information is guaranteed to be correct. The

latter two types are not completely dependable, and must not be

used to make decisions which could affect the correctness of the

manager.

I facts are known to be true because the resource

manager itself imposes them. For example, a processor resource

manager might impose a 10% duty cycle on a process, and therefore

knows that over some time interval the process will consume 10%

or less of the processor resource. Deduced facts are obtained by

analyzing some (unchanging) system components outside of the

resource manager. For example, the resource manager might

inspect the code sequences of a client process to deduce its

future resource needs. This would only be possible if the

- 149 -

A- Seg



.~ 2 . ..

process were prevented from changing its &wn program and thus

invalidating the deductions. Stgistca information as the name

implies is derived from a series of observations of some

quantity. The statistical analysis may be done offline and the

results built into a resource manager as statically known facts.

Alternatively the manager may make observations and attempt to

follow dynamic trends. However the information is garnered, it

is not completely trustworthy. Statistical information is often

stated in terms of distributions, e.g., working set size

distributions. V facts are given to the resource

managers directly by clients through some form of interprocess

messages. A client might state its intention to use a quantity

of a resource over a period of time, or not to use the resource.

The utility of this information depends on the trustworthiness of

the client process. If a client volunteers information which is

incorrect then decisions made by the manager based on incorrect

information may lead to worsened performance.

5.2.3 Policies and Mechanisms

A p is a goal or guideline set by the system

administrator constraining the decisions made by a resource

manager. An intelligently formulated policy is based on the

value of the work performed by client processes, in an effort to
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maximize an overall benefit measure for the system. Insofar as

policies hinge on "value received" they necessarily concern goals

and priorities external to the computer system. For example, a

system-wide policy might aedicate late night hours to one project

known to absorb large amounts of computing; or it might grant

preferred status to interactive processes over batch processes

because it is felt that people should not be kept waiting.

A mehns is an internal system structure designed to

implement a class of policies. An interesting discussion of

mechanism versus policy can be found in [34]. The distinction

between mechanism and policy is difficult to state precisely, and

is best presented through an example, which follows.

Single host operating systems sometimes divide the processor

manager into two components, the dispat^,lg_ and the scheduler or

poliymodule. The dispatcher maintains a list of processes

requesting the processor, sorted on a numeric priority field.

When the currently active process releases the processor or

exhausts its time quantum, the dispatcher activates the pr.ocess

with highest priority on the list. The dispatcher implements a

mechanism for priority scheduling but does not determine a

policy, because priorities are set by the scheduler. The

scheduler executes asynchronously with the dispatcher and from
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time to time changes the priorities of the other processes. The

scheduler decides the relative value of client processes, and

assigns priorities accordingly. The scheduler implements a

policy which is carried out by the dispatcher; the dispatcher

could be mated with different schedulers at different times to

implement a range of policies.

Below we use the term strategy informally to mean a specific

policy combined with an implementation mechanism. Ultimately we

would like to make quantitative statements about the performance

properties of various strategies, but in this report we do not

progress so far.

5.3 The Importance of Time

Resource management strategies are realized as computer

programs, and computers do not function instantanecusly.

Inevitably, delays in the decision procedure cause transients in

system metrics when viewed on a fine enough time scale. This

section attempts to clarify the role of time in resource

management. We ignore for the moment the problem of maintaininr

synchronized clocks in a distributed system, and concentrate on

the interplay of event rates and resource management decisions.

From one perspective we see a resource manager as a simple
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BoxM BoxS

Requests, Releases, State

Mainager tymn

Grants, Preempts

Figure 10. A Control Model of Resource Management

contrul system (Figure 10). In this model the computing system

s artitioned into two boxes, one containing the resource

.r.e other containing all remaining system activities.

S,-es, Box M observes state changes in Box S -- Reguest

* . :--ages, the number of active clients, consumption

-Pr resources that correlate with the consumption

.4o -: -,ource, etc. Box M transmits control signals

l , a effort to minimize an error function, E(S), on

,e ,ar-at-es of Box S. At any instant in time, the

acsoc-.te mag! -.ude of E(S) is a measure of the deviation of the

state of Box S from its "desired" or "optimal" state. The

control signals are of two types: grat messages, the reply to a
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reQuest indicating resource allocation and permitting a process

to proceed, and Dreempt messages, forcing a client to free a

resource and thus become blocked.

The control loop in this model consists of three parts:

information gathering, decision making, and execution. In any

practical system each of these parts takes time, and the minimum

response time of the control loop to a change in the state of Box

S cannot be less than the sum of the minimum times for each part.

In a distributed resource management system, it is likely that

the information gathering and control paths are by means of

network message transmission. In this case the maximum network

round-trip message delay limits the response rate of the control

loops.

Time Interval Activity

manual ( >24 hours physical reconfiguration
techniques
possible about 1 day daily operating procedures

1 to 8 hours user session

automatic 1 to 60 minutes program execution
techniques
necessary 0.1 to 5 secs. user interaction

4bout 50 msecs. process-to-process
interaction

I
TABLE 1. Time Epochs for Resource Management
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Any resource management mechanism is effective only when

evaluated over a sufficiently long period of time; the

approximate minimal interval for success we call the grain of the

mechanism. We can characterize the feasible resource management

mechanisms on the basis of grain size. The classification into

six groups shown in Table 1 is not absolute nor are the

boundaries between categories sharp, but it illustrates our

understanding of the pragmatics of resource management. The six

grain sizes are discussed in turn below.

5.3.1 Grain Size: Days, Weeks, Months

Over very long time periods significant human planning and

negotiation is possible. A time scale of weeks or months permits

databases to be moved, new hardware acquired, and new software

written to meet long term resource needs. Capacity planning is a

routine commercial practice for large computer systems, and the

resource management strategies at this level are usually

considered in the province of Operations Research.

Optimization techniques based on linear or non-linear models

may be used to aid the decision process. Costs are expressed

directly in dollars since the planning period is of the same

order as budget cycles. Capacity planning is closely related to

the goals and financial status of the hosting organization.
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5.3.2 Grain Size: One Day

Over periods of time approaching one day, human control of

resource management is still possible but will probably be

stylized. For example, computer operators may alter system

configuration throughout a 24-hour day to track daily trends,

following procedures in an operator's handbook. Management

strategies are planned in advance to meet contingencies.

5.3.3 Grain Size: Several Hours

A typical interactive user session lasts at most a few

hours. A session corresponds to the period of time a user is in

continuous contact with the system, usually beginning with

connection and authentication (login) and ending at a user

command (logout). Because session initiations occur very

frequently resource management decisions made at this and smaller

grains are automated 13 .

5.3.4 Grain Size: Several Minutes

The next smaller grain of management is the jso step. The

growth of "command language" or "shell" programming has made it

13A common exception is the allocation of tape drives, since
the tape handling sequence is difficult to automate.
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difficult to define what a job step is, but to us it represents a

significant computational task such as compiling a program,

editing a file, or performing a statistical analysis of a

dataset. Job steps can be separated into two types, interactive

and non-interactive. Interactive job steps include editors and

mail programs, each job step composed of many interactions

between a user and a process. Non-interactive job steps include

compiling and batched data analysis. Interactive job steps may

persist for many minutes while the user issues individual

commands; non-interactive job steps are usually brief, less than

5 minutes if the user must wait for results.

5.3.5 Grain Size: One Second

The basic command response interval should be on the order

of one second for the most common user interactions. Delays

longer than about two seconds interrupt the user's actions

sufficiently to prevent continuous type in. When a user depends

on hand-eye coordination to perform a task such as moving a

cursor to an object on a screen, the response time must be even

smaller.

Timesharing systems have adapted to this basic interaction

rate. The scheduler of the TENEX operating system, for example,

contains several time constants that are related to the
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interaction event rate, and on this system it is difficult to

activate processes at a higher rate. The time constants control

the frequency of scheduler runs, the frequency certain queues are

inspected for wakeup events, the quantum size, etc.

5.3.6 Grain Size: Ten Milliseconds

At this level both the events and resource management

mechanisms must be automated. High rate interactions arise

between separate computer systems, between computer systems and

sensors, and between computer systems and controlled mechanical

devices. One very important case of this type is process-to-

process communication. In the ARPANET, for example, message

switching processors continuously allocate and release buffers on

the basis of messages received from other processors; buffer

reauest and releas operations occur at intervals of 10 to 10O

milliseconds.

5.3.7 Policies and Time

A resource management policy is an assertion about resource

utilization by processes over time. Intuitively we recognize

that policies are implemented by computer programs which take

time to reach decisions. Consequently, over an interval on the

same order as the grain of the resource management mechanism it

is not possible to achieve meaningful control over resource
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allocation. A feasible policy must take this into account by

making assertions on system measures averaged over an interval

larger than the grain size.

Informal statements of policy rarely include the time

constants involved. A few typical informal policy statements

are:

1. "All processes should be treated equally."

2. "A process should receive a fraction of the processor
proportional to its pie slice."

3. "High priority jobs should run first."

4. "Always run the process with the smallest product of
size times processor time used."

The most direct example of grain is provided by the

processor resource of a single processor. A group of processes

may request the processor simultaneously but only one may use it,

so that for very short intervals the processor utilization of one

process is 100%, and for all others it is zero. The policy (1)

above cannot be implemented over intervals as short as this.

The next paragraphs give an example of a formal policy

statement. The policy is a minor variant of the TENEX pie-slice

processor scheduling algorithm, chosen because there are concise

informal and formal policy statements, and because the

significance of the policy parameters is well understood. The
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policy was originally devised for a single host system; we will

discuss the possibility of a distributed implementation in

Section 5.6. The policy statement itself is independent of the

distributed or non-distributed nature of the implementation.

5.3.7.1 An Informal Definition of the Pie-Slice Policy

The pie-slice processor manager attempts to divide the

available processor time among a set of processes in proportion

to administratively assigned pie-slices. A process P has a pie-

slice Sp assigned to it, such that the sum of the Sp over all P

is one. At any given time a subset of the processes are

demanding, that is, would utilize the processor if it were

granted to them. The processes which are not demanding are in

wait states, for example waiting for disk I/O to complete.

A more careful statement of the pie-slice policy must take

into account that only one process can use a processor at any

instant, and that a process which does not demand its fair share

over the long term cannot possibly acquire it. Because there are

often large blocks of unutilized processor time most processes

will not generate a demand equal to their pie-slice over a long

period of time. As a result, the informal statement will be seen

to hold only over an interval long compared to the process

switching time, but short compared to a day.
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5.3.7.2 Moving Time Averages

An important vehicle for making policy statements is the

moving JIme average. Let Up(t) be the utilization of the

resource by process P at time t. For the processor resource

Up(t) is always either 0 or 1. The moving time average of the

utilization is defined to be:

AP r(t)= -inf Up(x)re-r(t-x)dx

where r is a time constant determining the weighting of recent

and less recent utilization values. r is sometimes chosen from

the relation:

r =- - - ln(1/2)
h

The value th is the time interval required for the contribution

of an impulse in Up(t) to decay to 1/2 of its original magnitude.

The moving time average represents a history-sensitive

approximation to the instantaneous utilization of a resource. If

the time constant th is chosen to be large relative to the rate

of change of Up(t), the effect will be to smooth the utilization

values; as th gos to zero, Ap,t converges to Up(t).
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5.3.7.3 A precise Statement of the Pie-Slice Policy

The pie-slice policy can now be defined in terms of two time

constants, tj and t2 , and a time interval ti .

For all processes P a:nd at all times t:

1) Apt 2 (t) < Sp

2) if P has been demanding since t-ti,
Ap t1 (t) > Sp

Clause (1) states that over time periods of about t2 units

or more, the amount of the resource consumed by P does not exceed

its pie-slice. Clause (2) states that over short periods of

time, if P is demanding then P receives at least its fair share.

Together they imply that over moderate periods of time P receives

the portion of its pie-slice which it can effectively use.

This example illustrates important features of policy

formulations:

1. A precisely stated policy must involve a grain size, a
minimum time interval over which it is effective.

2, Policies tend to have several components describing
behavior over different time periods or load
conditions.

3. Policies with simple intuitive bases may have formal
specifications which are difficult to understand.

5.3.8 A Design Principle

The grain of a resource management mechanism is a
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fundamental limit to the range of policies that can be enforced

by the mechanism. An important principle of system design is

that the grain must be smaller than the mean interval between

allocate/deallocate events to assure stable operation. This

suggests that a feasibility evaluation be performed for each

resource management mechanism during the design process.

The evaluation can be done in three steps:

1. Determine the Grain Size. Approximate the time required
for a reouest or r to be serviced, by adding
known message delays and the manager's processor
requirements.

2. Determine the Allocate Event Rate. Estimate or measure
these characteristics of the system load.

3. Compare the Grain and Event Rate. If the mean
interevent time is smaller than the grain, the
mechanism is infeasible.

Even when only rough approximations to the rates and delays

can be obtained, the procedure above may yield valuable

information about the eventual performance of the resource

manager.

5.3.9 Example

Consider performing dynamic task assignment to the APU's

described in Section 3.3. Assume an FCU configured with five

APU's, a data collection module, and an archival storage module

as shown in Figure 11. The data collection module buffers sensor
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Figure 11. A Possible FCU Configuration

data internally, and at intervals of about 0.5 seconds must

transfer a buffer to the archival storage unit. The transfer is

done under the control of an APU which moves the buffer from the

data collection module, into its internal memory, and then to the

archival storage unit.

Suppose two designs have been proposed for the APU resource

management. Design A would dedicate one APU permanently to the

transfer task; design B would require the Master APU to select

one of the Pool APU's dynamically for each buffer transfer. A
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dynamically assigned APU must obtain a copy of the task image

from disk storage before it can initiate the task. The message

sequence for Design A might be:

1. The data collection module sends a "buffer ready"
message to the dedicated APU (say, Pool APU 3).

2. APU 3 responds with an acknowledgement and permission
to transmit the buffer.

3. The data collection module transmits the buffer to the
APU 3 local memory.

4. APU 3 transmits the buffer to archival storage, and
waits for an acknowledgement.

5. Archival storage acknowledges with a "buffer accepted"
message.

The message sequence for Design B might be:

1. The data collection module sends a "buffer ready"
message to the Master APU.

2. The Master APU selects a Pool APU (say, Pool APU 2) to
service the request, and transmits a "task assignment"
message to APU 2.

3. APU 2 receives the "task assignment" message and
transmits a "load task image" request to the disk.

4. The disk transmits the task image to APU 2, and APU 2
initiates the task.

5. APU 2 proceeds from step 2 in the previous sequence to
complete the transfer.

We follow the steps above to determine the feasibility of

Design B. The time for a teouest from a data collection module to

be serviced is the tinie required for the Master APU to select a

Pool APU, transmit the "task assignment" message to it, plus the
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time required for the selected APU to lead the task image from

the disk. Suppose small messages can be transmitted between FCU

modules in 10 milliseconds (including low-level software

overhead), and the task image can be transmitted in 20

milliseconds. The Master APU will process the request in 5

milliseconds or less. Thus the elapsed time for a reguest is

approximately 3*10+20+5 = 55 milliseconds, assuming no delay in

obtaining a free APU. The allocate event rate as stated above is

2 buffers/second, well below the maximum serviceable reguest

rate. Therefore Design S is feasible.

If the allocate event rate were 20 buffers/second, the

interevent time of 50 milliseconds would be too small for dynamic

task assignment; Design A would have to be employed instead.

5.4 The Formulation of Policies

A policy is an expression of intent regarding the allocation

of scarce resources among processes.

It is strongly related to the external goals of the system

as a whole and the perceived relative value Df the work performed

by individual processes. In this sense policy formulation treats

the computer system as a black box, and whether or not the system

is physically distributed is not significant. For example, a
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policy can establish priority for one class of users over

another, and a consistent interpretation of priority can be

developed for distributed or centralized system implementations.

Policy formulation for computer systems has much in common

with policy formulation in society. The task of capturing the

intuitive concepts behind a policy and expressing them precisely

and completely is extremely difficult. Even more difficult is

the assessment of the relative worth of user activities (users

generally have strong personal or group biases) and the

establishment of priorities.

Complex policies tend to evolve over time. Because policy

formulation is usually based on case analysis complex policies

have lengthy expressions. Policies are often expressed

implicitly by the mechanisms which implement them. This approach

presents a clear danger, in that interactions between cases may

not be fully understood in advance, and procedures must exist for

resolving conflicts. For instance, a policy which simultaneously

seeks to grant high priority to interactive jobs and low priority

to jobs with large memory requirements must also decide the

priority of an interactive job with large memory requirements.

All too often, the resolution of such conflicts is left to a

system programmer and never publicly documented.
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At the same time that a policy must be intuitive and

complete, it must be feasible or capable of implementation. A

feasible policy can easily become infeasible as it evolves

through the addition of cases and constraints.

The feasibility requirement forces policy makers to

understand the structure and performance properties of the system

implementation, and it is at this point that the distinctions

between centralized and distributed systems become important.

The following paragraphs develop specific issues in policy

formulation as applied to resource management in computer

systems.

5.4.1 Objective Functions and the Concept of Utility

A substantial body of theory has been developed concerning

linear and non-linear optimization. In this field, problem

statements are usually of the form "maximize (or minimize) an

objective function F(X-,...,xn) subject to a constraint on the xi

given by the predicate P(x1,...,xn).,, When the objective

function F and the constraints P are both linear functions of the

xi, the problem is in the domain of linear pr ming.

Practical solution techniques are available for very large linear

programming problems. When the objective function or the

constraints are non-linear the problem becomes more difficult,
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and fewer solution techniques are known. The problem statement

above can be viewed as a policy, for which the value of the

objective function provides a measure of utility or worth for a

given system state.

The policy requires that the system be "operated" (the xi

chosen) so as to maximize its utility. This approach to resource

management is applied to computer systems, most visibly in long-

term planning. The utility can be defined directly as the

reciprocal of cost, and an objective function can be composed

from costs associated with values of the parameters. For

example, the problem of determining the optimal placement and

capacities of leased communication lines can be formulated as a

non-linear programming problem. Optimization procedures are used

for long-term planning and "static" allocation decisions,

decisions which change only very slowly with time. The computer

and human time required to solve the problem will be

insignificant compared to the potential savings from even small

improvements in a large system.

The optimization approach does :tend easily to time-

varying functions. It is difficult just to state simple

intuitive policies such as "maximize throughput" when the

constraints vary with time, and impractical to apply automatic
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solution techniques. Less direct policy statements that leave

the numerical utility of system states unspecified are easier to

construct and more intuitive; they prevent the use of numerical

optimization techniques, however. The next section discusses the

elements of such policies.

5.4.2 The Elements of Policies

Resource management policies are comprised of three types of

elements: external administrative goals, internal administrative

goals, and users' goals. We distinguish administrative from user

goals because administrators are able to judge the relative value

of user tasks and system-wide resource allocation decisions,

while users are not.

5.4.2.1 External Administrative Goals

An administrator may know for reasons beyond the purview of

the computer system that a task initiated by user A is more

important than a task initiated by user B. If so, the

admini:trator may assign A pr3ii for access to resources over

user B. Priority may or may not be preemptive, so that if B's

task is in progress when A's is initiated, B will be immediately

deprived of the resources A needs to proceed. When a resource

cannot be preempted, adherence to a priority scheduling

discipline is limited to grants issued to queued processes.
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Less severe policies for expressing biases are 9..j-, l,.n.g

(discussed in Section 5.3.7.1) and class of setivLce schemes. A

class of service scheme categorizes a user task as belonging to

exactly one service class, for example real-time, batch, or

interactive. A class is granted resources based on some assumed

common behavior of its members; tasks within a class are usually

treated equally. Classes may be defined by implicit properties

of tasks. For instance, processes which have accumulated less

than 100 milliseconds of processor time since their last

interaction may be placed in a high priority service class, and

those with more than 100 milliseconds in a low priority class.

A resource management mechanism based on time-varying

resource entitlements was proposed in [3]. This mechanism

permits the relative utilities of processes to change as they

consume resources, and thus represents a general setting for

policies like the one in the last paragraph.

5.4.2.2 Internal Administrative Goals

Focusing on the cost-effectiveness of a system rather than

external priorities generates policies to maximize resource

utilization. Economic realities force some consideration of

capacity planning at all installations.

A typical example of a policy based on cost-effectiveness is
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shortest-job-first (SJF) processor scheduling. Under suitable

assumptions it can be proven that SJF minimizes the expected

waiting time in a closed system (one in which the number of

processes is fixed), and maximizes the throughput in a saturated

open system (one in which the number of processes is variable).

It minimizes waiting time, however, at the expene of increasing

the variance of the response time; large jobs are delayed longer.

5.4.2.3 User's Goals

Individual users are naturally concerned about receiving

enough resources to carry out their assigned tasks. Users'

claims for resource allocation can be roughly characterized as:

Subsistence the minimum level of resource grants necessary
for a user to accomplish a task;

Fairness in the absence of external constraints, one user
is entitled to as much of a resource as another;

Quality of Life
users need some resources above the subsistence
level in order to work quickly and effectively.

Scheduling algorithms often attempt to achieve fairness for

some class of customers. The round robin approximation to the

processor sharing discipline is one example of a fair scheduling

policy. Quality of life arguments are visible in the temporary

increa3e of priority given to processes immediately following

user interactions.
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5.4.3 The Interplay of Goals

The resource management policies of a system are usually

formulated from several goals as described above. It should be

recognized that the goals are almost always in conflict. There

is a clear tradeoff between imposed priorities and fairness to

users; sufficiently harsh priority structures impact the user

quality of life, and eventually subsistence.

Every timesharing user is familiar with the cost-

effectiveness versus quality of life tradeoff, in the form of

poor response time when the system is heavily loaded. The

tradeoff between priority and resource utilization is perhaps not

so clear, but can be very important. A rigid priority structure

prevents scheduling algorithms from making some decisions which

would increase resource utilization. The effect can be dramatic

in single host systems, decreasing processor utilization on the

order of 50%. When resources are scarce there is a tendency

towards priority-based policies, with stronger administrative

control. Very scarce resources may be managed statically

(through human planning) just to avoid the overhead in automatic

management. When resources are abundant, fairness and quality of

life arguments gain influence.

The issues discussed in this section are primarily
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organizational. It is difficult to imagine a computer system

with a pervasive priority mechanism run by an organization

lacking one. Without centralized administrative control over

system resources, global policies cannot be implemented.

5.5 Resource Management Issues in Distributed Systems

Resource management in a distributed system is distinguished

from relource management in a conventional centralized computer

system by three principal factors:

1. Distributed systems are often vastly more complex than
centralized systems, and can have hundreds or thousands
of allocatable components.

2. Since distributed systems contain multiple processor
and storage components, there is a possibility of
improved reliability through redundant data storage and
the reassignment of tasks to healthy processors.

3. The message transmission time between processes on
different processors can be large, relative to the
message transmission time between processes on the same
processor.

The first factor suggests that the (non-automated)

administration of the staff and physical facilities of a large

distributed system may be difficult. This directly impacts the

scope of automatic resource management decisions within the

system, since any resource manager must have authority to control

the resources it manages. Pre-existing organizational frameworks

may restrict the ability to centralize authority, and thus limit
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the effectiveness of automated resource management strategies.

For example, a distributed system host "owned" by a particular

agency or department may not be available for permanent file

storage to other agencies or departments, even though the system

could be incorporated into a global allocation scheme. When

authority over physical and logical resources (i.e., databases)

is fragmented, the utility of global resource management should

be questioned.

Redundant data storage and reliability mechanisms complicate

global resource management because they interact with it. The

need to maintain two copies of data on storage devices with

independent failure modes, for instance, clearly complicates the

allocation decisions for the device resource manager. The use of

task reassignment to achieve survivable operation can be applied

to client tasks and tasks within the DOS itself; in particular,

it is highly desirable for the DOS resource managers to be

survivable in order to provide continued service with the

remaining system resources to DOS clients.

Message delays have important implications for the structure

of global resource managers. The essential fact is that local

(independent) decisions can be made more rapidly than global

(consensus) decisions, in the absence of prior knowledge about
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demand patterns. When the communication paths are very slow,

most of the resource decisions must be made independently, and

only long-term scheduling can be done globally. With faster

transmission mechanisms the burden of scheduling can be shifted

toward global strategies.

The following sections expand upon these ideas, first from

the DOS client's viewpoint in Section 5.5.1 and then from the

global resource managers viewpoint in Section 5.5.2.

5.5.1 The DOS Client Interface

5.5.1.1 Visibility of Distribution

To the extent that the distribution of resources is visible

to DOS clients and under their direct control, the DOS is

prevented from global resource management. If it is possible for

a client to specify that a file be allocated on a particular

host, or that primary memory on a particular host be dedicated to

a process, the DOS is unable to make allocation decisions for

these resources. Only when a client requests one or some units

from a pool of identical resource units is global resource

management possible.

During the DOS design, fundamental decisions must be made

concerning the resources which will be globally managed by the
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DOS. In the past, the highest priority for distributed

management has been accorded to t.e shared objects central to the

rPC facility (i.e., "sockets", "ports" and "connections"). Some

zystems include a distributed file system and the required

storage devices within the scope of the DOS [8], and a few manage

processor resources [13). The processor resource is difficult to

manage globally because the event rate (process activation-

deactivation rate) is higher for a processor resource than, say,

for a file resource. Systems which attempt to dynamically assign

tasks to processors are likely to be built around high bandwidth

communication media; this is an example of the grain phenomenon

discussed in detail in Section 5.3.8.

Resources may be placed under client rather than DOS control

for a variety of reasons. The topology, bandwidth, and

propagation delay of the communication network may force DOS

client programs to exercise precise control over task and file

assignment to meet performance goals. Generally, the visibility

of distribution to a client will increase as its demands approach

the ultimate performance of the underlying hardware. In contrast

global resou-rce management becomes more attractive as the number

of clients increases, each requiring only a small fraction of the

available resources.
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Clients may be aware of the distribution of resources

because the administrative authority fur their management is

distributed. This is true, for example, of computer accounts on

different hosts within the ARPANET; an ARPANET user must

(potentially) negotiate with a separate organization (business,

agency, university) for access to each ARPANET server.

Depending upon the facilities provided by the DOS, the need

for synchronization of updates and accesses to a database by

different clients may force knowledge of the location of the

database; in particular, it may force a unique copy of the

database to be maintained.

5.5.1.2 Resource Subsets

A resource manager has a pool cf resource units under its

control which it uses to satisfy the clients' requests 14 . In

principle all units of a resource in a distributed system could

be controlled by one resource manager, and be equally accessible

to requesting clients. Situations often dictate separate

managers for subsets of the pool of resources of a given type,

however. Similar resources may belong to different resource

14The allocated resources may be preemptable, in which case the
manager's control extends through the pericd of allocation.
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managers because:

1. Under close examination, the units of the resource are
not precisely identical.

2. The topology of the communication network forces
"regional" resource management to minimize
communication delays.

3. Administrative controls (e.g., security) influence the
permissible sites for processing or data storage.

4. Unreliable equipment is excluded from a resource pool
even though it is otherwise acceptable.

5. It is expensive to extend the implementation of a
resource manager to a new host supporting units of the
managed resource.

Resource subsets are usually directly visible to client

processes, and clients must invoke different resource managers to

obtain resources in separate subsets.

An example of the first factor is the incompatibility of

processor types within the ARPANET. A program written for a

DECSystem-20, say, is almost certainly incompatible with an IBM

host, and could be incompatible with a DECSystem-10 host or even

a DECSystem-20 host running an earlier release of the monitor.

Depending on the requirements for compatibility, the resource

pool available to that program may have to be severely limited.

(Since dynamic assignment of tasks to processors is not the

normal mode of operation on the ARPANET, the problem does not

occur in practice.)
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The division of resource units of the same basic type into

separate resource pools is itself a resource management decision

on a relatively long time scale. Clients are often restricted to

obtain the resource units they need from one manager, and thus

the allocation of units to pools will affect the rate of progress

of client processes. Too many managers for one resource may make

it impossible to enforce a coherent global resource utilization

policy.

Resource subsets are closely related to the issue of binding

in a distributed system. A binding links a name with a value,

and is one of the most fundamental concepts in computer systems.

In centralized systems, binding issues are simplified because

there are fewer bindings to construct, and many of them can be

formed statically. Distributed systems require the maintenance

of many more bindings for their operation, between names and

users, processes, hosts, files, ports, etc. The creation and

deletion of bindings is more difficult in distributed systems

because the information relevant to the states of bound objects

may be scattered among several hosts. Binding has been discussed

earlier from the perspective of reliability.

The construction of resource subsets is also closely tied to

the problems of "file assignment" and "communications capacity".
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Considerable work has been done on these problems in isolation

(see (53, 43]). The most commonly used approach is through

network theory, and linear or non-lineak programming. Static

allocation decisions (in reality, resource allocation decisions

with a very large grain) determine resource subsets available for

automatic allocation within the distributed system. Static

allocation decisions are very important when the communications

bandwidth is small, and decline in importance as the bandwidth

increases and dynamic reconfiguration becomes less costly.

5.5.1.3 Performance and Reliability

To some extent reliability and resource control are at odds.

Reliability mechanisms depend upon the maintenance of

synchronized, redundant copies of information, whether in the

form of process checkpoints or redundant databases. As a natural

consequence they place an added burden on the resource allocation

mechanisms, both because they increase the demand for system

resources and because they introduce a new dimension along which

resources must be distinguished by managers, namely, the

independence of failure modes. Client processes attempting to

achieve reliable operation may request redundant storage areas,

for example, that are identical in all respects except for their

failure independence; this aspect must be recognized and catered

to by the responding resource manager(s).
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Reliability mechanisms may also complicate resource control

for the client by introducing a new level of abstraction between

the client's view of DOS objects and the physical resources of

the distributed system. Ultimately, the usage of physical

resources determines the performance properties of the client

programs; in order to optimize the performance of a client

program, it must be possible to comprehend the relationship of

DOS interface operations to the consumption of physical

resources. The introduction of new concepts for reliability such

as stable storage [32] makes this more difficult. Some aspects

of reliability mechanisms that should be carefully analyzed for

their impact on resource management are synchronization, recovery

operations, and the allocation of resource units with independent

failure modes.

5.5.1.4 DOS Operations for Resource Control

Resource management decisions cannot always be made

automatically, and it is important that DOS clients be able to

influence or control some aspects of resource management. The

central design decisions concern a precise definition of the set

of resources to be controllable by a client, and the manner

control will be exercised. For example, clients might be

permitted to control to some extent the memory management

strategy applied to them (clients might be able to choose between
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demand paging, swapping, and swapped working set policies) but be

unable to control the degree of buffering accorded interprocess

messages. The client gains leverage on performance problems by

being able to influence resource allocation, but the DOS becomes

more complex and administrative control over resource policies

may be diluted.

If a DOS client is part of a distributed task there are

other issues to be resolved. In general a mechanism must be

provided for transferring resource control authority, initially

from the DOS to a client process, and subsequently from one

client process to another. Decisions must be made regarding the

grain of resource control to be exerted by a client process. It

may be desirable to limit the topological scope of authority.

For example, the influence of a client process over resources may

be restricted to adjacent resources (i.e., those residing on the

same host as the process) or those resources in the same cluster,

where the high interprocess communication bandwidth permits a

fine grain of control. Thus we envision clients in a local

cluster participating in the scheduling of local host processors,

but not participating in the scheduling of processors belonging

to remote clusters because of the sizable communication delay.

Because a client becomes a resource manager when it asserts
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control over system resources, the issues in Section 5.5.2 are

pertinent. In particular, the failure of a client process

(whether due to hardware failure or an incorrect program) may

cause resources to be temporarily or even permanently lost to the

DOS, if the client had authority for the allocation of the

resources when it failed.

The design principle in Section 5.3.8 limits the grain of

resource allocation decisions when the demand patterns of DOS

clients are not known in advance. This limitation can be very

severe when communication delays are large; it can be avoided,

however, if the demand patterns are known in advance. In this

case reservations can be employed to allow fine grain

coordination, in a manner described below.

The success of a reservation strategy depends upon the

existence of accurate, synchronized clocks at remote hosts. We

assume the hosts normally communicate over channels with

relatively long propagation delays and high variance. Suppose a

distributed transaction must obtain resources at three hosts A,

B, and C, simultaneously, and that A is the originating host. At

a time T1, A negotiates reservations for the needed resources

with B and C, the resources to be committed at a time T2, where

T2-T1 is large compared to the negotiation time. At time T2 the
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resources are simultaneously allocated at all three hosts, and

the transaction is initiated by A. When the transaction proceeds

from A to B and C, it will find the resources it needs already

allocated and waiting.

Reservations are used for some purposes in conventional

systems, for example, users ar3 often allocated disk capacity in

anticipation of future need. The use of reservations in global

resource management has not been thoroughly studied.

5.5.2 The Implementation of Managers

The implementation of a manager for a distributed resource

may be centralized or distributed. Both techniques have been

employed in the past. The National Software Works concentrates

many allocation decisions in the Works Manager process bound to a

single, distinguished host in the network. The routing

algorithms used by ARPANET packet transmission nodes represent

the fully distributed extreme, with nodes cooperating in a loose

way to allocate line capacity and buffer space where it is most

needed.

5.5.2.1 Centralized Manager Implementation

The advantages of a centralized resource manager

implementation are:

1. The manager can be constructed with proven, sequential
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program techniques.

2. Message traffic may be reduced, since the manager neea
not use interhost messages for internal purposes.

Administrative policies may be easier to enforce, sinue
policy is concentrated at one site.

4. The manager may be easier to construct and maintain
because code is only developed for one computer system.

The major disadvantage of a centralized resource manager is

,ne sensitivity to a single failure point. Reliable operation

-n be achieved by appointing "heirs" to the resource management

mcr.Kn, existing on alternate hosts. In the event cf

:ailure, one heir is chosen by some means to become the active

resource manager, and the others remain in the passive state.

is ai;proach was utilized in the NSW Reliability Plan [38].

.52.2 Distributed Manager Implementation

Distributed resource managers are inherently more complex

than their centralized counterparts. Concurrent programs are

:sually more difficult to construct, test, prove, and modify than

c-4jential programs. A distributed resource manager may po.ssess

.. e compensating advantages, however.

1, if the manager is properly designed, survivable
operation may be a natural consequence of a distributed

Ln7)] eertation.

n e manager may be constructed so that the throughput
of allocation decisions scales with the number of
partiLipating hosts.
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3. Because of distribution, the manager may more easily
participate in scheduling activities local to the hosts
which support its component parts.

Point (3) suggests that a closer integration between local and

global scheduling may be possible if the implementation of the

resource manager is distributed.

The disadvantages of a distributed implementation, in

addition to the problems of writing concurrent programs, concern

the extra messages needed to transmit state information between

resource manager components, the difficulty of capturing a

"snapshot" of system state for debugging or recovery, and

possibly the need to construct manager components under different

host architectures.

5.5.2.3 The Maintenance of Resource State Information

A resource manager may choose to maintain state information

which is accurate at all times (up to communication delays), or

it may update its internal state only at allocation/deallocation

events, or it may adopt a compromise. A tradeoff will normally

exist between maintaining up-to-date information (permitting

rapid allocation decisions, but requiring additional message

exchanges to distribute state information) and reducing the

overhead incurred by the manager (allocation decisions may be

delayed while accurate state information is obtained, but fewer
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messages need be transmitted).

Several systems have employed the update-on-demand

technique. In the RSEXEC system, for example, TIPS broadcast a

"Can you accept login?" message to a set of candidate hosts when

a user attempts to login. The first responding host is selected,

on the hypothesis that it is likely to be less heavily loaded

than the hosts responding later. A more cautious approach might

be to include the system load average in the host to TIP reply,

so that the TIP could choose the most lightly loaded host with

high probability.

The routing tables in the ARPANET packet switches mentioned

previously are an example of the continuous update approach. In

this system status information is continuously exchanged among

switches. The ARPANET switches keep the overhead to a manageable

level in two principal ways: First, it is sufficient for a

switch to use slightly out of date data and as a result make

allocation decisions that are short of optimal. Second, some of

the status information needed by the switches is piggybacked onto

routine traffic, and thus represents only a small additional

network overhead.

5.5.2.4 The Transmission of Authority

The authority of a client to obtain a given resource, in tht

- 188 -



absolute sense, and its priority for obtaining the resource, in

the relative sense, must be stored as protected state information

within the computer system. This information may be centralized

or distributed, stored within resource managers or in some other

repository. Since managers must first determine the authority of

a client to obtain a resource before it can be allocated, this

information must be readily available if allocation decisions are

not to be delayed. This suggests that the permission information

follow the manager implementation -- a centralized manager can

most easily utilize a centralized permission database, and a

distributed manager can benefit from distributed permission

information (provided the distribution is carefully chosen).

5.6 Strategies for Global Resource Management

This section presents two examples of global resource

management strategies, based on statically assigned priorities

and time multiplexed resource consumption. Issues concerning

both policies and mechanisms are discussed, but the treCtment is

by no means exhaustive.

5.6.1 Static Priorities

5.6.1.1 Priority-Based Policies

When we say that process A has priority over Process B, we
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mean that an authority external to the computer system has judged

the work performed by A to be more important than the work

performed by B. The authority dictates that system resource

managers give preference to the resource requests of A over those

of B, when A and B compete for the same resources. Unless some

external authority has this control over the behavior of resource

managers, priority scheduling is impossible.

Preference may be given to a high priority process with or

without em1p.ti ng. With preemption, a resource manager will

preempt or reclaim immediately resources needed by the high

priority process and currently allocated to a lower priority

process. Without preemption, processes may hold resources they

have been allocated until they voluntarily release them. In

either case, processes waiting for resources in a manager's queue

are serviced in priority order as the resources become" available.

Preempted processes must either be suspended until the

resource becomes available again, or they must be notified of the

preemption through an exception mechanism. Interrupt handling is

an example of the former case; an interrupt causes processor

state to be saved in some area of memory, the interrupt handler

to be executed, and the interrupted process to be resumed. The

practicality of the preempt-resume discipline in any given
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situation depends on the existence of the state save and resume

operations, and on the cost of the operations. Preemption is

quite practical, generally, for processor scheduling; useful over

longer time periods for memory scheduling, because the preempt

and resume costs are higher; and not useful for processes reading

and writing magnetic tapes, because it is not feasible to save

and restore the intermediate state information existing only on

tape.

Because priorities are set by external (usually human)

authority they tend to be static, at least relative to the

process activation and deactivation rates inside a computer

system. Thus it is not practical to associate external

priorities directly with processes, and instead priorities are

assigned to users, projects, roles, departments, etc. These

priorities are stored as a database (centralized or distributed)

within the computer system. The system also incorporates rules

which determine the priority of any process as a function of its

relationship to the statically assigned priorities. For example,

if the Superintendent is entitled to priority 3, processes

initiated by the Superintendent will execute at priority 3.

Processes should be able to transmit their priorities along

with service requests to other processes. The service module is
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then permitted to execute at the priority of the requesting

process, while it is operating on its behalf. In fact, the

capability model developed for Hydra [74] can be applied directly

to the transmission and revocation of priorities.

5.6.1.2 Mechanisms for Static Priorities

A simple priority-based strategy might operate as follows:

1. Processes have a priority and an owner. When a user
creates a new process through a direct interaction with
the DOS, the user becomes the owner of the process, and
the process priority is derived from the user's
priority.

2. Whenever a process creates a new process, the owner and
priority of the new process are taken as the owner and
priority of the old process.

3. When a process A owned by one user transmits a message
to process B owned by another user, A may authorize B
to use its priority for a limited period of time.
Process A specifies the expiration time in the message.

4. When process B receives a message from process A, its
priority is set to the maximum of its prevailing
priority and the priority authorized by A.

5. If process B reaches the expiration time specified in
the last message which caused its priority to change,
B's priority is reset to the priority of its owner.

Many improvements and customizations to this simple strategy for

disseminating priorities are possible, but it should serve as an

example of what might be done.

Once a definition for the priority of DOS processes is

available, it remains to specify how the priorities should be
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carried out. Within a COS the answer seems to be clear-cut: the

DOS assigned priorities should be treated by COS resource

managers (for the processor, primary memory, disk channels, etc.)

with complete trust. The same mechanisms used to implement

priority scheduling within the COS suffice for DOS scheduling.

One shared resource is not managed by the COS's, namely, the

communication network. Priority may be reasonably extended to

priority for access to the communication network, and we give one

example of how that might be done here.

The Ethernet (371 was the prototype for a class of local

networks known as contntion or bra networks. The strategy

described below is adapted to utilize a contention network as the

communications medium; in particular, we make use of thT. fact

that any message transmitted can be overheard by all sk-tion%

attached to the network.

1. Every message transmitted is stamped with the priority
of the sending DOS client process.

2. All network stations receive the priority field of
every message transmitted (they receive the remainder
of the message only if it is addressed to them).

3. The network rority is defined to be the priority of
the last message transmitted.

4. If the network priority is P and a DOS process with

priority Q wishes to transmit, there are two cases:

o P<=Q: the process transmits, and the network
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priority becomes Q;

o P>Q: the process is forced to wait, until the
network priority is reduced.

5. A DOS watchdog observes the network traffic, and if no
activity at network priority P is observed after some
time interval, the watchdog transmits an empty message
with priority P-I, reducing the network priority.

An interesting refinement is possible with regard to the

backoff algorithm used to delay retransmission attempts when a

collision is detected. If two processes collide, their backoff

intervals can be weighted by priority, higher priority having the

smaller weight. It is thus probable that the higher priority

process will attempt to retransmit first, and lock out the lower

priority process by increasing the network priority.

The treatment of processes of equal priority has not been

discussed, but some attempt at "fairness" is probably required.

Whether "fairness" is necessary, and whether permanent 6locking

is inherent in the "fairness" concept, is an administrative issue

rather than a technical one.

5.6.1.3 Priority and Utilization

Whenever absolute priorities are contemplated, their

potential effect on resource utilization should be understood.

If processes can hold several resources simultaneously, absolute

priority can result in arbitrarily low resource utilization for
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almost all resources, in the worst case.

For example, suppose a uniprocessor with disk storage is

executing one task, which consumes 50% of the processor and 50%

of the disk channel capacity. A higher priority task enters the

system, and this second task computes but does no I/O (or only a

negligible amount); the high priority task consumes 100% of the

processor but forces disk utilization to zero.

A similar situation could occur wherein priority for the

disk channel forces processor utilization near zero.

5.6.2 Time Multiplexed Tasks

5.6.2.1 The Policy as a Form of Reservation

The technique of time multiplexing divides the access

periods of several processes to a resource into slots, discrete

intervals sequential in time. Usually the pattern of slots is

repeated cyclically many times, and changes only slowly relative

to the slot duration. An important example of time multiplexing

in computer systems is processor multiplexing, which makes one

physical processor appear to be many virtual processors. The

technique is also commonly used in communication systems, where

each slot represents a virtual cirguit or c t . This

approach is valuable in part because of the convenience of time
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domain swting, i.e., switching circuits by permiting the order

of slots from an incoming to an outgoing data stream.

Many variations on the basic concept are possible. Slot

durations may be fixed or variable, and control over the slot

assignments may be centralized or distributed. In the

centralized case, the slot duration can be apportioned by the

central contrcl to reflect the entitlements of processes to the

resource, i.e., more valuable processes receiving larger slots

and consequently better service.

The Flexible Intraconnect (FI) being developed for the

Tactical Air Force will permit the communication network to be

time multiplexed in very flexible ways. In particular, there are

two modes of operation known as Virtual Bus Modes A and B that

permit variable and fixed duration time slots, respectively. The

FI will support up to 63 Virtual Buses simultaneously, and each

can operate in either Mode A or B, the mode being fixed at system

initialization time.

We envision extending the time multiplexing provided by the

Virtual Bus to include time multiplexing COS resources. Under

the FI VB Mode B, for example, fixed time slots are allocated to

particular interface units; the DOS could coordinate these tin,
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slots with COS memory management by swapping DOS tasks into

memory slightly in advance of the slot, and locking them until

their time slots expire. This mode of operation would permit the

overhead of swapping operations to be overlapped with other COS

activities, and would seek to achieve the greatest degree of

resource coordination within a distributed task.

In essence, this approach considers a time slot to be a

reservation for future service. It relies upon the assumption

that distributed tasks will complete more rapidly if they are

able to obtain all needed resources (including communication

access) at the same time.

5.6.2.2 Mechanisms for Time Multiplexing

To achieve globally synchronous operation as described

above, the distributed DOS components must be able to accurately

compute the positions of time slots. This can be done by

maintaining stable clocks at each COS which are synchronized only

rarely, or less stable clocks that must be synchronized more

often, or the synchronization can be done entirely by messages

transmitted at the beginning of each slot time. Any one of these

approaches may be practical under particular circumstances.

The DOS components at each COS must be prepared to allocate

COS resources in time for upcoming slots. This means that slot
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times cannot be too small, or the hosts will be unable to

complete the allocitid-ns--It probably means that only

preemptable resources can be allocated in this way, and that the

time required for preempting (e.g., the time required to swap out

a process) must be on the order of the slot time, or less.

Although we are unaware of serious attempts at resource

allocation strategies of this type, we believe they are worthy of

serious consideration at this time. The high bandwidth available

through local network technology reduces the grain of scheduling

decisions that can be accomplished in a distributed system. The

Flexible Intraconnect provides features to support mechanisms of

this type that have been previously unavailable.

5.6.2.3 Clock Synchronization

The ability to build stable local clocks and accurately

synchronize them is important to reservation based resource

management schemes. The technology for building extremely stable

local clocks is well known and not particularly expensive; the

problem of synchronizing the clocks is more difficult.

If clocks are to be synchronized by means of messages

transmitted through the network, the variance of message delivery

times is a fundamental limit to the precision achievable.

Therefore it is useful to understand the propagation delay and
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variance for a local network, and if possible, to take measures

to reduce the variance. For example, a special operating mode

might be used to synchronize system clocks, in which no messages

except synchronization messages from a central clock are

permitted on the network.

Clock synchronization is a fruitful area for further study

in distributed systems [31].
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6. COS FEATURES FOR EXTENSIBILITY

Experience suggests that some operating systems are much

easier to incorporate into a DOS than others. It is natural to

inquire as to why this is so, and what features or capabilities

should be present in a Constituent Operating System (COS) for it

to be easily assimilated and an efficient base for the DOS

functions.

The hosts connected to a distributed system can be

classified into three types:

1. Medium or large scale shared hosts.

2. Special purpose processors.

3. Personal or dedicated general-purpose computers.

The first type is a multi-user system which may supply services

to a number of clients directly attached to it or accessing it

through the network. The second type includes processors such as

the image correlation unit in the FCU example of Chapter 3, which

are dedicated to very specific uses and have limited

programmability. The third type includes single-user-at-a-time

processors with general programmability, but no shared access;

the workstations of the Air Traffic Control example are assumed

to be of this type. This chapter is directly related only to the

first type, shared hosts, and addresses the characteristics of
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tkie COS "'or snareo nozts; It uiay have some implications for the

third typc.

We assume that the DOS functions are to be constructed on a

logical level above those of the COS, and it is desirable to make

minimal changes to the COS implementation in developing the DOS

implementation. The DOS processes are clients of the COS's in

the distributed system, and obtain local services by requests

made to the COS's. A COS may nave additional local clients that

do not part4i.;at- in the a:1 dt all, and in this event we expect

some provisi,,ns fr preventing or minimizing accidental

int,.eractiuns between the ciient communities. What primitive

services snould the COS offer to its clients? The sections below

explore t e question.

An extension to an operating system is the addition of any

software or hardware that enriches some client's view of the

functionality of the system. A new software product in the form

of a compiler or !atabase management system is an extension that

would probat-iy be visiole to many users; functions defined in a

private library 'of function . and procedures may be extensions

.,'1sibie : 1,il j o or:=.- I .t i a small group of clients.

The If inuai;iern .1 ,ieai;s uy which a system is extended through
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software is by the addition of data structures to the permanent

storage media of the system. These data structures may include

programs, static data, and data that changes over time. From

this viewpoint an extensibility mannis is any OS feature for

the creation of long-lived structures. The three major

categories of extensibility mechanisms in operating systems are:

1. Program structuring

2. Directory services

3. File access methods

Program structuring mechanisms enable a programmer to divide

a program into smaller pieces or modules which are in some sense

"separate". Because program structuring occurs at many levels

from firmware to high level languages it is difficult to state

generally what constitutes a module, or how modules combine; in a

specific context the concept is usually clear. A few classical

program structuring mechanisms include the subprogram or

procedure facility, separate compilation, separate processes, and

the utilities for linkage and cross referencing that accompany

them. A particularly important type of program structuring

facility for distributed computation is the solution of a complex

problem by multiple cooperating processes.

Directory services are the means for associating names with
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operating system objects. Names are usually character strings,

and the objects referred to are typically files, users,

processes, devices, hosts, or directories. Because a directory

can be used to represent many-to-one relationships (many names

for one object) an. because directories themselves are objects

and can be named, very complex structures (arbitrary graphs) can

be represented by a general directory mechanism. Although most

practical systems do not provide full generality and place

restrictions on the connectivity of directories, this structuring

mechanism remains extremely important and useful.

A file access method is a means for efficient storage of

data on secondary memory devices. Access methods can be

extremely simple, permitting only sequential access to a data

file through OPEN, READ, WRITE, and CLOSE primitives, or

extremely complex permitting associative access to data items and

managing a hierarchy of storage devices (e.g., staging data from

tape to disc). File access methods support a client's logical

view of data and aid in the construction of databases.

Different operating systems emphasize different areas of

extensibility. !BM's OS/VS offers a wealth of file access

methods but is relatively deficient in primitives for managing

processes; in the UNIX operating system the situation is just the
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reverse. The result is that some kinds of extensions are easier

to build and possibly more efficient on one system than another.

We expect that it is easier to construct database systems on

OS/VS than on UNIX and easier to develop communication software

on UNIX than OS/VS.

The areas in which an operating syjtem is readily extensible

will usually correspond to mechanisms recognized by the operating

system designers as central to the system concept, and

subsequently carefully developed into general, efficient,

convenient, well-documented, and stable OS features.

6.1 COS Design Versus Retrofit

We believe that the extension of a COS to a DOS host places

heavy demands on COS extensibility. The demands might be met by

the design of a completely new COS or by the selection of an

existing OS and its modification to achieve the necessary

flexibility. These two points of view dictate different

approaches to the problem.

When a COS is designed from the beginning, the opportunity

exists to choose central system concepts to be compatible with

the expected use of the system. For instance, a COS designer

might choose to provide a very powerful process concept with
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long-lived processes existing on secondary storage, a strong

interprocess communication facility, and reliability mechanisms

for checkpointing processes. Efficient implementations are

possible for the concepts if this is a major design goal. Some

less important system features may suffer as a consequence of the

emphasis on COS extensibility, but the choices surrounding the

tradeoffs are under the control of the system designers.

The person selecting an operating system to become a COS is

faced with a different problem. For most commercial machines

there are a small number of major operating systems available in

any case, and the selection must be made from among them. None

will be entirely satisfactory, and the choice is likely to be

made as much on the basis of familiarity and compatibility with

existing software and hardware as on isolated technical merit.

Once the OS is selected, some modifications will have to be made

to adapt it to the distributed environment. Because operating

systems are complicated and modifications are costly and time-

consuming there is pressure to keep the changes to a minimum.

Major system concepts of the selected operating system will not

be changed; components such as the processor scheduler and

virtual memory manager may be tuned, but will probably not be

redesigned.

- 206 -



Some of the discussion below applies only to the case where

one contemplates a new beginning, with the possibllity of a

strong departure from the past. Other features can be applieo to

existing systems with some potential benefit.

6.2 COS Extensibility Needs

In this section four areas of operating system extensibility

we feel are particularly important in a COS are discussed. They

are:

o Process structuring and messages

o Process and file directory services

o Resource control and accounting

o Client authentication and access control

6.2.1 Process Structuring and Messages

Distributed systems are necessarily composed of multiple

processes, at least one per processor node. We have observed

that once processes are acknowledged as a unit of modularity they

are exploited for this purpose even on a single host and wtthin a

single appli.ation. In testing phases there is a natural

tendency to use a process on a local host to mirror or represent

a process on a remote host with which it communicates.

Recently economic and technical forces have caused increased
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interest in process structured application programs. Three

prominent examples of this trend are the National Software Works,

a distributed operating system (8], INGRES [61], a relational

database system, and Hearsay-II [12], a speech understanding

system. Each is composed of several cooperating processes

running as OS clients. An interactive request to one of these

systems may activate a substantial number of processes and cause

a flurry cf interprocess messages. In the case of NSW the

messages may travel over the interhost communication network.

The trend toward process structured application programs

will continue and intensify. The declining cost of processors

and the availability of inexpensive local networks encourage the

use of real parallelism at the level of processor modules; the

introduction of parallel programming constructs into high level

programming languages such as Concurrent Pascal [6] and Ada [27]

encourage the use of virtual parallelism as a structuring

methodology. In the case of COS desigii, where communication

between asynchronous processes on separate COS's is expected to

be commonplace, facilities for process structuring are vital.

There are several areas of concert, for COS process

structuring. A COS client process should have the ability to

create new processes dynamically at low cost. The processes will
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cooperate by means of Interprocess Communication (IPC) that

allows them to exchange messages. For high bandwidth transfers

exceeding the capacity of the IPC, it is desirable for processes

on the same COS to be able to share memory regions.

Process structuring is an important modularity mechanism in

a COS, and thus a COS should contain a rich set Df primitives for

manipulating processes. At a minimum system calls should allow

an executing process to:

1. Create or destroy other processes.

2. Suspend execution for a fixed time interval, from
fractions of a second to days, weeks, or months.

3. Interrogate the status of other processes in the system
(does a process still exist? is it dormant?).

4. Suspend the execution of other processes, and later
explicitly resume them.

The number of processes which can be created should not be

limited by any small, fixed-size system table. Processes which

are dormant should cause very little additional overhead, in

particular, processes dormant for a long period of time should

not require any primary memory space during the period of

inactivity. It is desirable to treat a dormant process in much

the same way as a data file, checkpointing it periodically and

possibly permitting the storage of processes on demountable media

(disk packs and magnetic tape).
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Message primitives serve a dual role, transmitting data

objects and defining synchronization points between processes. A

summary of recent proposals for message primitives can be found

in [25].

The issues surrounding interprocess communication center on

these factors:

o The way a logical binding is achieved (partner named)
for the evaluation of a send and receive primitive pair.

o The amount of message buffering to be provided
automatically by the system.

o The syntactic and semantic compatibility of various
message facilities with high level programming
languages.

It is generally recognized that processes must be able to

wait for messages from one of several different sources

simultaneously. There is also a need for a time-out mechanism to

terminate a send or receive operation which does not complete

after a specified time interval.

The structure of message based systems is still under active

research, and because it is a not a primary responsibility of

this work will not be pursued here. More information on process

and message structuring can be found in the

references [25, 27, 15].
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6.2.2 Directory Services

Directory services are the means by which name-to-object

bindings are established. A centralized system normally

maintains one copy of each object (e.g.-, process or file) and

thus the name translation process is fairly straightforward. In

a distributed system, however, the high cost of communication

between sites motivates the replication of objects at mult..ple

sites. The binding mechanism can be greatly complicated by the

existence of redundant copies of files and processes, the need to

locate a copy at binding time, and the need to restore bindings

in the event of failures.

If the directory services of a COS are sufficiently flexible

the COS clients may be able to modify and use them for their own

needs. An important requirement is that long object names be

permitted, to allow clients to superimpose their own structure on

the COS directory services. It is also useful for directory

entries to have a provision for client defined attributes (such

as a t12e field). It is difficult for the COS designer to know

in advance how much flexibility to supply; traditionally clients

are not able to encode information in directory entries except in

the entry name itself. It has been proposed to structure all of

the operating system information, including directories, in a
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general database system [68]. Through the database mechanism

client processes could construct alternate views of the system

tables in the COS, and add or delete information from their

private views as necessary. This approach has not been given a

full-scale test to our knowledge, but merits further study.

6.2.3 Resource Control

One of the major responsibilities of an operating system is

the management or scheduling of shared resources among its

clients; this is equally true of distributed and centralized

operating systems. A DOS, however, must construct its resources

from those of the underlying constituent hosts, and must

cooperate with the COS's closely. Contemporary operating systems

make extension of resource management into the sphere of client

processes difficult or impossible.

As an example, imagine a DOS with two distributed client

processes, DC1 and DC2. At the DOS level an administrative

decision is made to allocate 90% of the available primary memory

to process DCI and 10% to DC2.

In order to implement the policy, the DOS must obtain some

knowledge of the availability of the primary memory resource

within COS components, and be able to influence COS memory
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management decisions in the appropriate manner. Typical

operating systems available today either prohibit a client

process from influencing another client's memory allocation, or

permit it only if the client is granted blanket authority to

control memory allocation for any client process. Neither

situation is acceptable for the needs of a COS.

The research operating system Hydra [34, 73] developed at

CMU for a multiple PDP-11 configuration known as C.mmp embodied

many of the resource control ideas we feel are important in a

COS. Hydra has provisions for special client processes called

Policy Module_ (PM's) that are able to schedule the processor and

memory resources of other clients in a controlled way.

The important features of Hydra as a model for COS resource

control are:

o The ability of client subsystems to appoint a Policy
Module to manage resources for the group.

o The separation of short and long term scheduling in
order to reduce overhead.

o The presence of resource guarantees that lead to
predictable performance properties of subsystems.

o The existence of capabilities for PM status and policy
objects, preventing interference of subsystems over
resources.

Similar features could be included in a COS for a hardware

environment more conventional than C.mmp.
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6.2.4 Authentication and Access Control

User authentication and access control are services likely

to be offered by a DOS. They are also services that will

probably be present in a COS for the use of COS clients. It is

desirable that the DOS functions for authentication and access

control be obtained by extending the COS functions, rather than

by an entirely new set of mechanisms implemented at the DOS

level. Extension is preferable to separate implementation for

several reasons. Software development costs may be reduced

simply because the DOS implementation is smaller. Security is

improved because fewer lines of system code are involved with

authentication and access control, and thus can be more readily

verified. System performance may be improved by the elimination

of interpretive evaluation of access controls at more than one

system level (e.g., evaluation of a DOS file protection code

followed by evaluation of the COS protection code for the COS

file representing the DOS file).

In order to realize these advantages the COS must be

prepared to cooperate with its clients in the proper way. A

capability based system such as Hydra permits almost unlimited

flexibility in the construction of alternate protection regimes

by client processes, and iZ a nearly ideal environment for
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extension. No widely available operating system appears to

implement the full generality of the Hydra capability scheme.

6.3 Enhancement vs. Elevation

We distinguish two types of extensions to computing systems,

enhancements and elvajion. An enhancement is an extension

which is visible to all of the clients of the extension. Usually

when we consider extending a system the extension is, in this

terminology, an enhancement. For example, the addition of a new

subroutine to a program library is an enhancement of the library;

in order to use the new subroutine, a calling program must be

aware it exists (know its name, or a means for determining the

name) and must understand its function (know its input and output

parameters and side effects). Whenever a "new feature" is added

to a computer system, we say the system is enhanced.

An elevation is an extension whose visibility is relative to

the client using the elevation. The concept will be more fully

explored using abstract types below. As an example, suppose a

two level memory hierarchy in a typical timesharing system

(primary memory and disk storage) is used by a client process

P. P opens, reads and writes the files stored, in the memory

hierarchy. A standard set of operations is provided by the OS to
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perform these functions. A revision to the operating system is

then generated which extends the memory hierarchy to three levels

(primary memory, disk storage, and tape storage). The extension

has been designed so that process P can continue to work as

before, with no changes to its code, because the primitive

operations used by P support exactly the same interface as

before. There may be a new interface used by program Q but not

used by P (because it didn't exist when P was written) which

allows explicit control over the movement of files between tape

and disc.

This extension we call an elevation, because in effect the

functionality of program P has been "elevated" or "lifted"

without its knowledge to utilize the new memory hierarchy. The

elevation is invisible to program P, but visible to program Q15

Although most functional extensions to computer systems are

enhancements, elevations can play an important part in

distributed systems. An elevation offers the opportunity for

extending the function of a system component without altering it;

15 an elevation which is invisible to all observers is not a
true extension, since it is indistinguishable from the unextended
system.
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thus elevations are economically motivated. The implementation

of the TELNET communications protocol in the ARPANET is an

example of an elevation in a distributed system. Remote users of

a computer system are aware of the TELNET link between hosts

since they explicitly construct it; the programs used at the

remote site are generally unaware of the presence of the link.

The protocol is an elevation that permits programs to be

controlled remotely without the need for them to be adapted to

the distributed environment (e.g., by the introduction of special

system calls to transmit network messages). In order to be more

precise about enhancements and elevations, we will introduce the

concept of abstract type, and then illustrate different

extensions in terms of abstract types.

6.3.1 Abstract Types

The a _tye is an important conceptual and practical

tool for the description of complex software systems. The

concept was popularized by Parnas [44, 45] and others, and is now

embodied in a number of computer languages (e.g., Mesa [40],

Alphard [21], and Ada [27, 28)). The discussion of COS

extensibility is simplified by the use of abstract types. For

completeness and because the precise meaning of "abstract type"

varies in the literature, we develop the concept briefly below.
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To a programmer, an abstract type appears to be a named set

of yaJueA, together with some operations on those values. The

type SequentialFile, for example, might have as its set of values

all possible sequential data files on a particular computer

system. Figure 12 lists the set of primitive operations on the

abstract type SequentialFile.

An obje of a type is a name associated with a value of the

type. The value of an object may change over time, as the

primitive operations of the type are applied to the object. To

continue the example, the value of an object MessageLog of type

SequentialFile might change as new messages are appended to the

file. All abstract types have operations to create (and destroy)

objects of their type.

Abstract types are themselves objects (they can be defined

formally as objects of a type AbstractType). An abstract type is

created, may be used and modified, and eventually destroyed. An

abstract type appears differently to its creators than to its

users, since the former group must have access to the

representations of the abstract values and operations of the

type. The representation of an abstract object is defined in

terms of other abstract objects of different types, and their

operations; of course, eventually all abstract types are derived
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from a set of primitive types known to the system A priori.

The abstract type concept is very useful for describing

systems of software and hardware modules that interact only in

carefully controlled ways. Because the model has been developed

only recently, and because support for a uniform environment of

abstract types and objects is complex, currently available

operating systems do not implement them. The Hydra operating

system [7] (discussed above) does implement a uniform object

world, and provides a rich environment for the construction of

operating system extensions.

6.3.2 Enhancements

Figure 13 shows primitive type PhysicalFile used in the

representation of SequentialFile. This is an example of

enhancement in the language of abstract types. Enhancements can

be generated by:

1. Creating new abstract types.

2. Modifying an existing typa.

3. Creating new objects of existing types.

4. By a combination of the above.

An existing type can be enhanced by the addition of new

operations on its values, or the extension of previously defined

operations to broader argument domains. New objects of an
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existing type are an enhancement insofar as clients can obtain

new behavior through the operations on the object.

Even when an enhancement is implemented on an OS without

full suppcrt for the abstract type model, it remains a useful

thought tool for formulating extensions and establishing the

relationships between modules.

6.3.3 Elevations

Ideally, the services of a COS would be structured as a

collection of abstract data types. The extensibility mechanism

would enable a client process P to replace a data type T used by

client process Q with a type T', in such a way that Q is unaware

of the substitution. Because P cannot know, in general, which

operations of T are used by Q, T' must either implement or trap

as an error every operation of T. (T' may define new operations

not in T, if downward compatibility is not a requirement.)

There are two sizable pitfalls to this approach. First, if

type T' is to be a truly transparent extension to T, it must

implement a subset of the operations of T with identical

semantics, as observed from Q. Demonstrating that this has been

achieved is a problem in program verification and is infeasible

at this time except for simple examples. Second, if the set of
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operations in T is large, it may be very costly to build a

meaningful extension T' (i.e., one which will support many

different clients .ike Q with few error traps).

A mechanism for elevation is extremely desirable in a COS

because it enables COS local programs to be "lifted" into the

global context without modification. The cost of DOS application

programming may be greatly reduced if complex programming tools

can be easily imported into the distributed system.

An example of elevation based on the abstract type

SequentialFile is shown in Figure 14. Process P using the

abstract type SequentialFile obtains only local effects from the

operations Open, Read, Write,... while process Q using the

elevation SequentialFile' may act on remote copies of a file.

A mechanism for elevation is present in the Tenex operating

system in the form of JSYS traps [66]. JSYS traps allow one

process to define and control the virtual machine seen by other

processes. The controlling process does this by informing the

Tenex monitor of its desire to "trap" certain system calls issued

by the controlled processes. Whenever a controlled process

issues one of the trapped calls control is transferred by the

Tenex monitor to the trapping process, which may then perform

- 223 -

4% . .



Sequential File:

Messageg Log

- -I-

Figur 114 AnWxampEofaElvtn

CLOSE4



arbitrary actions including inspection of the state of the

trapped process, resumption of the original system call,

termination of the trapped process, and so on. The JSYS trap

mechanisms was designed to support elevations for distributed

computing, as part of the RSEXEC effort [65].

The Multics operating system includes the concept of dynamic

linking, which can be used in a manner analogous to JSYS traps.

Under dynamic linking, the binding of names to services is

postponed until the first attempt by a process to use the

service; at that time the name is resolved in the current context

of the process. The context of the process can, under certain

circumstances, be controlled by the parent of the process. By

properly constructing the context of a process a parent can

transparently substitute user defined services for system defined

services.

The common feature f both JSYS traps and dynamic linking is

that they permit a bindIng process (system call numbers to

routines, in the case of JSYS traps, and procedure names to

segment entry points, in the case of dynamic linking) to be

transparently modified by a "third party". This is accomplished

by some form of indirect access, although the details differ

considerably. For JSYS traps, the TENEX monitor maintains a trap
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vector table for each process. When a trap occurs, the result

may either be a transfer to the standard service routine or the

awakening of the "third party" -- a user-defined process which

can perform an arbitrarily complex action before restarting the

trapped process. Multics employs a "linkage segment" containing

indirect references to procedures; initially the references are

symbolic, but after the first call the symbolic reference is

replaced by a segment entry address.

The set of independently trappable service requests is fixed

in the case of JSYS traps (it is just the set of system calls)

whereas any symbolic procedure name can be replaced with dynamic

linking. Finer control over the substitution of services is

potentially provided by Multics 16 . The JSYS trap mechanism is

simpler than the linkage segment mechanism in Multics (linkage

segments have other important uses besides dynamic linking) and

was, in fact, an enhancement to Tenex. The linkage segment

concept is central to Multics and woven into the design in

complex ways.

1 6 Substitution of services can be thwarted by poor modularity
or by permanent binding of modules by the Multics binder.
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Either JSYS traps or dynamic linking can be used as a

mechanism for elevation, but the ability to gain control at the

proper point is only one of the obstacles to the creation of

useful elevations. The completeness and correctness of the

client supplied services remains a major issue, and suggests

elevation is not likely to be a commonly used strategy for minor

functional extensions. For major extensions, such as the

construction of subsystems as discussed in the next section, it

remains an important technique.

6.4 Subsystems

By a subsystem we mean an environment for user activities

assembled in such a way that the user rarely has need to leave

the subsystem to perform a task. The design of a subsystem is

more difficult than the design of many other programs because of

the requirement for completeness and coherence of functions

presented to the user. Often subsystems are described entirely

in one "user manual" that attempts to capture the total range of

activities pursued by the subsystem user. Prominent examples of

subsystems in the realm of programming systems are LISP and APL

environments; many examples exist in business applications. The

design and construction of subsystems is made costly by the

requirement for completeness.
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For example, an APL subsystem must contain much more than an

APL interpreter. At a minimum, it must contain an editor for APL

functions, trace and debugging facilities, and a cataloguing

facility for functions. If the subsystem is to be complete in

the sense that a programmer need not leave the system at all, it

will probably include directory services for files, a mail

system, libraries of APL functions, operations to move functions

between the workspaces of different users, etc. Many of these

services are probably already available to users of the APL host

operating system through some other interface (e.g., the

"monitor", "shell", "exec", etc.).

Subsystems can be constructed more inexpensively if the host

system provides facilities for subsystem production, i.e., for

the elevation of system services into subsystems. Packaging a

DOS as a subsystem is a natural way to produce the DOS component

processes on COS's; thus although features for subsystem

construction are not directly concerned with distributed

computation, they will significantly influence the cost of

implementation of a DOS.

A host should have a well-defined set of conventions which

can be adopted by the subsystem. Some specific areas we believe

require careful consideration in a COS are conventions for:
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1. Object name syntax. A uniform syntax for COS objects
(primarily files, processes, and hosts) encourages
commonality of directory, name parsing, and name
validation services. A flexible convention will permit
long names to be created, and should not make automatic
generation of names difficult. Conventions for name
patterns (so-called "wild card matches" in Tenex and
TOPS-20) are valuable and should be treated in a
uniform manner by COS processes.

2. Input/Output Editing Conventions. Operating systems
support conventions for rudimentary editing of textual
input and output. The input editing functions
typically include backspace, cancel current line,
retype current line, and perhaps a few others; the
output editing functions include stop and start output
and discard all output until next request for input.
It is important for these conventions to be maintained
across COS processes, because it is extremely
irritating for users to learn different conventions for
seemingly identical functions. It is less important
for these conventions to be maintained across
subsystems, since by assumption users do not move
between subsystems very frequently.

3. Command Scanning. A convention for the syntax of
command lines can be important. A famous example of
this is the syntax of OS/360 JCL, an early use of
formal syntactic specification. If the parsing
services for commands are modularized and available to
system clients there is increased incentive for a
uniform command interface, since clients need not
contain the parsing code themselves.

6.5 Design Issues

6.5.1 Transparency

Sometimes the structure of a subsystem prevents access to

operations of the COS or lower level subsystems that is

subsequently found to be essential at the higher level. The

result is the partial redesign of the lower layers to give the
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subsystem client access to the needed operations. The redesign

can be costly and difficult because it spans multiple levels of

the system.

A principle intended to eliminate this problem is espoused

in [46). The principle requires that higher levels of software

be transparent, in the sense that a layer will not prevent a

higher layer from achieving any valid state in the layers below

it. The principle of transparency is in direct contradiction

with the principle of information hiding. The compromise reached

between them is an issue for serious consideration in the design

of a COS.

As an example of where the problem occurs, consider the COS

interface to the communication network. Should the COS permit

clients (all clients? authorized clients?) to directly control

the network interface? A DOS may need low level control over the

protocols transmitted, or error correction techniques to be

employed. Low level access, on the other hand, often implies the

ability to disrupt other clients' use of the interface. For this

reason it should only be permitted if the DOS subsystem is

trusted by the COS.
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6.5.2 Economics

COS mechanisms have associated costs. It is difficult or

impossible to separate the costs of features specifically

introduced to facilitate participation in a distributed system

from those necessary or desirable in a centralized OS.

For instance, a mechanism for elevation is desirable in a

COS. What is the cost of the JSYS trap mechanism, or of the

dynamic linking facility in Multics? The JSYS trap mechanism was

introduced to support elevations for a distributed application,

but how much of its cost should be considered specifically as

distributed system support, when it can also be used for single

host systems?

The cost of COS mechanisms can generally be divided

according to the time at whicn the cost is incurred. There is a

component of the cost incurred when the mechanism is designed and

implemented; another when a process is constructed using the

mechanism (e.g., for static data structures); and some cost each

time the mechanism is used. There should also be an awareness

that processes on the COS which do not use the mechanism may

suffer some overhead (e.g., for indirection through the linkage

segment in Multics), The tradeoffs among the various cost

alternatives can only be discussed in a specific design context.
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A factor which influences the cost of an elevation mechanism

is the precision of specification of the trapping condition. If

the trapping condition can only be stated coarsely (e.g., "trap

all file OPEN system calls") then some overhead is accumulated

when the trap occurs unnecessarily and execution must be resumed

as if the elevation were not present. If the trapping condition

can be specified precisely (e.g., "trap any OPEN on file

MessageLog in directory <wmacgregor>") the overhead can possibly

be reduced. In this regard we would expect the dynamic linking

mechanism to be a more powerful mechanism with lower overhead

than JSYS traps, because it allows the trapping condition to be

specified in the domain of the client program (i.e., an arbitrary

procedure name).

6.6 Recommendations

If the construction of a COS from the beginning is

considered:

1. A general mechanism for producing elevations should be

part of the COS design

2. Control of COS resources (especially primary memory and
processor time) should be possible from client
processes.

The Hydra operating system is an important model (the only one we

know of combining both aspects) for achieving these properties.
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If an existing OS is to be adapted to become a COS, the

selected OS should be chosen for flexibility in the areas of:

1. Process structuring and interprocess communication.

2. Directory services for OS objects.

3. Control by client processes over system resources.

4. Features for subsystem construction.
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7. PLAN FOR PHASE II

Our plan for Phase II of the DOS Design study is to develop

a prototype DOS design and to perform further development of

global resource management strategies.

7.1 Characterization of task

o To develop a prototype design of both a DOS and the
underlying support of the COS: O.S. primitives,
resources, servers, ..., primarily in the area of
reliability and resource management. Due to the limited
remaining resources of the contract, limits will exist
on the depth to which the topics may be explored.

o To develop mechanisms for supporting various global
resource management policies. For selected mechanisms a
quantitative study of the benefits of global resource
management will be performed using simulation and
mathematical modeling teihniques. The models will
concentrate on physical resources, these being
processors, memory, and the shared communication
subsystem.

o To do this work from the perspective of one specific
application based on the Field Control Unit example
which has requirements and constraints very similar to
those of the automation of office procedures, and to
some projected data processing components of the
Tactical Air Force. Limiting ourselves to a particular
application will help bound the level of effort needed.

7.2 Reason for performing task

A conclusion from Phase I of this study is that many

different types of reliability mechanisms have been proposed, but

very few operating systems have integrated such mechanisms into
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their set of general purpose primitives. Phase I also indicated

that almost no relevant work has been done towards the aim of

managing distributed resources to achieve global objectives.

Phase I surveyed known reliability techniques, but did not

elaborate the ways they might be used. Phase I also identified a

number of factors important to global resource management, but

did not develop specific strategies. Meaningful evaluations of

the effectiveness of reliability mechanisms and global resource

management are strongly dependent on the application and the

architecture on which the application is implemented.

We feel that the critical problems in these two subject

areas involve the integration of the mechanisms into a useful

whole. Therefore, Phase II will be aimed at selecting and

integrating into a prototype design: 1) an appropriate

application; 2) a distributed architecture as the implementation

base; and 31 a suitable selection of reliability and global

resource management mechanisms.

7.3 Topics to be investigated

o Description of the target application.

o Description of the distributed architecture
implementation base.
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o Selection and rationale for a set of reliability and
global resource management mechanisms based on the
application and implementation base.

o In the area of global resource management, special
emphasis on:

* Definitions of priority, class 9f service, and
timelinesa as they apply to the formulation of
global resource management policies.

* The precise formulation of a small, representative
set of global resource management strategies.

The definition of expected system workloads based
on the characterization of the application and its
probable usage patterns.

* The investigation of the performance properties of
strategies in the representative set using
simulation and mathematical modeling techniques.

o Description of prototype COS and DOS mechanisms in our
two areas of specialized interest and other areas of
O.S. functionality.

o Description of the manner in which these integrated
facilities can be used to implement the target
application.
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7.4 Expected Benefits and Results

o Evidence that the selected reliability and resource
management techniques are compatible and appropriate in
an integrated design.

o Exploration of the implementation problems that would
result in using such mechanisms in an integrated O.S.

o Explicit ways in which reliability mechanisms such as
1) atomic actions, 2) flexible bindings, and
3) distributed coordination are used in a distributed
application.

o A catalogue of global resource management strategies
containing relative performance measures.

i
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